Engineered liquid crystal anchoring energies with nanopatterned surfaces
The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the ancho...
Gespeichert in:
Veröffentlicht in: | Optics express 2015-01, Vol.23 (2), p.807-814 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.23.000807 |