Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration
Current bone grafting materials have significant limitations for repairing maxillofacial and dentoalveolar bone deficiencies. An ideal bone tissue-engineering construct is still lacking. The purpose of the present study was first to synthesize and develop a collagen-hydroxyapatite (Col-HA) composite...
Gespeichert in:
Veröffentlicht in: | The Journal of oral implantology 2015-02, Vol.41 (1), p.45-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current bone grafting materials have significant limitations for repairing maxillofacial and dentoalveolar bone deficiencies. An ideal bone tissue-engineering construct is still lacking. The purpose of the present study was first to synthesize and develop a collagen-hydroxyapatite (Col-HA) composite through controlled in situ mineralization on type I collagen fibrils with nanometer-sized apatite crystals, and then evaluate their biologic properties by culturing with mouse and human mesenchymal stem cells (MSCs). We synthesized Col-HA scaffolds with different Col:HA ratios. Mouse C3H10T1/2 MSCs and human periodontal ligament stem cells (hPDSCs) were cultured with scaffolds for cell proliferation and biocompatibility assays. We found that the porous Col-HA composites have good biocompatibility and biomimetic properties. The Col-HA composites with ratios 80:20 and 50:50 composites supported the attachments and proliferations of mouse MSCs and hPDSCs. These findings indicate that Col-HA composite complexes have strong potentials for bone tissue regeneration. |
---|---|
ISSN: | 0160-6972 1548-1336 |
DOI: | 10.1563/AAID-JOI-D-12-00298 |