Mapping the Risk of Water Erosion in the Watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, China
Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Because soil erosion by water in the watershed of the Ningxia-Inner Mongolia reach of...
Gespeichert in:
Veröffentlicht in: | Journal of mountain science 2015, Vol.12 (1), p.70-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Because soil erosion by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River is closely related to silting of the upper reaches of the Yellow River, it is necessary to assess erosion risk in this watershed. This study aims to identify the soil-erosion risk caused by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River from 2ool to aOlO. Empirical models called Chinese Soil Loss Equation (CSLE) and Modified Universal Soil Loss Equation (MUSLE) were used to predict the erosion modulus in slope surfaces and gullies. Then the soil erosion risk in this watershed was assessed according to the classification criteria of soil erosion intensities (SL19o-2oo7). The study results showed that the range of values of the erosion modulus in this watershed was o-44,733 t/km2/a. More than 20% of the total watershed area was found to present an erosion risk, with the regions at risk mainly located in channels and their upper reaches, and in mountainous areas. To determine the regression coefficients of the erosion factors with respect to erosion modulus, a GWR (geographically weighted regression) was carried out using the ArcGIS software. It was found that the topographic factor has the highest contribution rate to the soil erosion modulus, while the highest contribution rate of the erosion factors to the erosion modulus and the largest values of the factors were not located in the same places. Based on this result, the authors propose that slope management is the most important task in preventing soil loss in this watershed, and the soil- conservation projects should be built according to the eontribution rate of the erosion factors. |
---|---|
ISSN: | 1672-6316 1993-0321 1008-2786 |
DOI: | 10.1007/s11629-013-2861-8 |