The microRNA Signature in Response to Nutrient Restriction and Refeeding in Skeletal Muscle of Chinese Perch (Siniperca chuatsi)
The Chinese perch ( Siniperca chuatsi ) is one of the most commercially important carnivorous fish species in aquaculture with its large-scale culture in China. Increasing evidence suggests that microRNAs (miRNAs) play an important role in muscle cell proliferation and differentiation. However, the...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2015-04, Vol.17 (2), p.180-189 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Chinese perch (
Siniperca chuatsi
) is one of the most commercially important carnivorous fish species in aquaculture with its large-scale culture in China. Increasing evidence suggests that microRNAs (miRNAs) play an important role in muscle cell proliferation and differentiation. However, the knowledge of the identity of myogenic miRNAs and the effect of nutrient status on miRNA expression in teleost remains limited. In the present study, among the 21 miRNAs identified with high abundance in the fast muscle of adult Chinese perch, 19 miRNAs were differentially expressed in the adults and juveniles. The postprandial changes in the transcript abundance were determined for the 21 miRNAs following a single satiating meal in the juveniles after fasting for 1 week. The results showed that the seven miRNAs (miR-10c, miR-107a, miR-133a-3p, miR-140-3p, miR-181a-5p, miR-206, and miR-214) were sharply upregulated or downregulated within 1 h after refeeding. These miRNAs may be the promising candidate miRNAs involved in a fast-response signaling system that regulates fish skeletal muscle growth. Target prediction and expressional analysis suggested that four miRNAs (miR-10c, miR-107a, miR-140-3p, and miR-181a-5p) might play a role in regulating the translation of target gene transcripts such as myostatin following acute anabolic stimuli. |
---|---|
ISSN: | 1436-2228 1436-2236 |
DOI: | 10.1007/s10126-014-9606-8 |