Steeply Increasing Growth Differential Between Mixture and Monocultures of Tropical Trees
Studies of biodiversity and terrestrial ecosystem functioning have concentrated almost exclusively on temperate grasslands. To broaden the reach of biodiversity‐functioning research, five fast growing species, comprising three eudicot trees and two congeneric palms (none symbiotic with nitrogen‐fixi...
Gespeichert in:
Veröffentlicht in: | Biotropica 2015-03, Vol.47 (2), p.162-171 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies of biodiversity and terrestrial ecosystem functioning have concentrated almost exclusively on temperate grasslands. To broaden the reach of biodiversity‐functioning research, five fast growing species, comprising three eudicot trees and two congeneric palms (none symbiotic with nitrogen‐fixing microorganisms), were grown for 13 yr in a replacement‐series mixture and monocultures on a fertile soil in a high‐rainfall area of lowland Costa Rica. The mixture accrued more biomass and had greater net productivity than the average, but not the most productive, monoculture. Relative Land Output (a measure of comparative yield) increased steeply. The combined evidence points to an increase in resource partitioning or facilitation among species over time. Spatial partitioning of aboveground space (for light capture) and soil (possibly for retrieval of deep nitrogen), and facilitation of phosphorus availability by one species, are mechanisms that may account for the inferred complementarity. Extending the generalized findings on biodiversity–productivity relationships from well‐studied grasslands to tropical forests is warranted. Mixtures of fast growing trees can out‐perform the average of their component monocultures, whether the metric is biomass accrual or productivity. The modular growth of long‐lived structure enables arborescent species to retain crown space previously captured and may lead to increased spatial partitioning and facilitation of resources over time. |
---|---|
ISSN: | 0006-3606 1744-7429 |
DOI: | 10.1111/btp.12190 |