Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins
DNA–protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on th...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2014-09, Vol.6 (9), p.804-809 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DNA–protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA–protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His
6
-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.
Conjugation of DNA to proteins often involves a choice between either expressing recombinant proteins with a specific handle, or labelling wild-type proteins with low site-selectivity. Now preorganization of a DNA–ligand complex to a metal-binding site enables site-selective conjugation of a DNA strand to lysine residues of wild-type proteins and antibodies. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.2003 |