Simvastatin exhibits antiproliferative effects on spheres derived from canine mammary carcinoma cells

Mammary cancer is the most frequent type of tumor in the female canine. Treatments are mainly limited to surgery and chemotherapy; however, these tumors may develop clinical recurrence, metastasis and chemoresistance. The existence of a subpopulation of cancer cells with stemness features called can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology reports 2015-05, Vol.33 (5), p.2235-2244
Hauptverfasser: TORRES, CRISTIAN G, OLIVARES, ARACELI, STOORE, CAROLL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mammary cancer is the most frequent type of tumor in the female canine. Treatments are mainly limited to surgery and chemotherapy; however, these tumors may develop clinical recurrence, metastasis and chemoresistance. The existence of a subpopulation of cancer cells with stemness features called cancer stem-like cells, may explain in part these characteristics of tumor progression. The statins, potent blockers of cholesterol synthesis, have also shown antitumor effects on cancer mammary cells, changes mediated by a decrease in the isoprenylation of specific proteins. Few studies have shown that simvastatin, a lipophilic statin, sensitizes cancer stem-like cells eliminating drug resistance. The aim of the present study was to evaluate the effects of simvastatin on spheres derived from CF41.Mg canine mammary tumor cells, which were characterized by phenotypic and functional analyses. Spheres exhibited characteristics of stemness, primarily expressing a CD44+/CD24−/low phenotype, displaying auto-renewal and relative chemoresistance. Exposure to simvastatin induced a decrease in the sphere-forming capacity and cell viability, accompanied by a concentration- and time-dependent increase in caspase-3/7 activity. In addition, modulation of β-catenin and p53 expression was observed. Simvastatin triggered a synergistic effect with doxorubicin, sensitizing the spheres to the cytotoxic effect exerted by the drug. Invasiveness of spheres was decreased in response to simvastatin and this effect was counteracted by the presence of geranylgeranyl pyrophosphate. Our results suggest that simvastatin targets canine mammary cancer stem-like cells, supporting its therapeutical application as a novel agent to treat canine mammary cancer.
ISSN:1021-335X
1791-2431
DOI:10.3892/or.2015.3850