Segmentation and measurement based on 3D Voronoi diagram: Application to confocal microscopy
Computational geometry provides many solutions to imaging problems, especially for three-dimensional (3D) image compression, segmentation, and measurement. We present here a new method to partition volume data by Voronoi polyhedra structured in a graph environment. A dynamic construction of the 3D V...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 1993-05, Vol.17 (3), p.175-182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computational geometry provides many solutions to imaging problems, especially for three-dimensional (3D) image compression, segmentation, and measurement. We present here a new method to partition volume data by Voronoi polyhedra structured in a graph environment. A dynamic construction of the 3D Voronoi diagram is proposed, using image information interactively. The process has been applied to segment and quantitate 3D biological data acquired with a confocal laser scanning microscope (CISM). The discrete volume acquired represents a large mass of data and can be reduced with this particular method, before measurement (processing time) or archiving (memory space). Furthermore, the structure data is a powerful tool to rapidly compute parameters that are characteristic of the volume data. |
---|---|
ISSN: | 0895-6111 1879-0771 |
DOI: | 10.1016/0895-6111(93)90041-K |