An aquaporin protein is associated with drought stress tolerance

Water channel proteins known as aquaporins (AQPs) regulate the movement of water and other small molecules across plant vacuolar and plasma membranes; they are associated with plant tolerance of biotic and abiotic stresses. In this study, a PIP type AQPs gene, designated as GoPIP1, was cloned from G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2015-04, Vol.459 (2), p.208-213
Hauptverfasser: Li, Jun, Ban, Liping, Wen, Hongyu, Wang, Zan, Dzyubenko, Nikolay, Chapurin, Vladimir, Gao, Hongwen, Wang, Xuemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water channel proteins known as aquaporins (AQPs) regulate the movement of water and other small molecules across plant vacuolar and plasma membranes; they are associated with plant tolerance of biotic and abiotic stresses. In this study, a PIP type AQPs gene, designated as GoPIP1, was cloned from Galega orientalis, a high value leguminous forage crop. The GoPIP1 gene consists of an 870bp open reading frame encoding a protein of 289 amino acids, and belongs to the PIP1 subgroup of the PIP subfamily. The transcript level of GoPIP1 was higher in the root of G. orientalis than in the leaf and stem. The level of GoPIP1 transcript increased significantly when treated with 200 mM NaCl or 20% polyethylene glycol (PEG) 6000. Transient expression of GoPIP1 in onion epidermal cells revealed that the GoPIP1 protein was localized to the plasma membrane. Over-expression of GoPIP1 increased the rosette/root ratio and increased sensitivity to drought in transgenic Arabidopsis plants. However, GoPIP1 over-expression in Arabidopsis had no significant effect under saline condition. The present data provides a gene resource that contributes to furthering our understanding of water channel protein and their application in plant stress tolerance. •A novel gene GoPIP1 was identified from Galega orientalis.•Expression of GoPIP1 was induced by salt and drought.•GoPIP1 enhanced drought sensitivity in transgenic Arabidopsis.•GoPIP1 changed ABA signals in the transgenic plants under drought stress.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2015.02.052