Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity
The aim of this work was to clarify the mechanism related to plant growth promoting of a bacterial strain (L115) isolated from Arachis hypogaea rhizospheres and the effects of high growth temperature and salinity on phospholipids and fatty acids composition. L115 was isolated from peanut rhizosphere...
Gespeichert in:
Veröffentlicht in: | Microbiological research 2015-04, Vol.173, p.1-9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this work was to clarify the mechanism related to plant growth promoting of a bacterial strain (L115) isolated from Arachis hypogaea rhizospheres and the effects of high growth temperature and salinity on phospholipids and fatty acids composition.
L115 was isolated from peanut rhizospheres and identified according to the sequence analysis of the 16S rRNA gene. Phenotypic, metabolic and plant growth promoting rhizobacteria (PGPR) characteristics of L115 were tested. Inoculation test in plant growth chamber was performed. In addition, L115 was exposed to a 37°C and 300mM NaCl and phospholipids and fatty acid composition were evaluated.
L115 strain was identified as Ochrobactrum intermedium and was able to increase the peanut shoot and root length as well as dry weight, indicating a PGPR role by being able to produce indole acetic acid and siderophores and present ACC deaminase activity. In addition, L115 showed tolerance to both high growth temperature and 300mM NaCl. The most striking change was a decreased percentage of 18:1 fatty acid and an increase in 16:0 and 18:0 fatty acids, under high growth temperature or a combination of increased temperature and salinity. The most important change in phospholipid levels was an increase in phosphatidylcholine biosynthesis in all growth conditions.
L115 can promote the growth of peanut and can tolerate high growth temperature and salinity modifying the fatty acid unsaturation degree and increasing phosphatidylcholine levels.
This work is the first to report the importance of the genus Ochrobactrum as PGPR on peanut growth as well as on the metabolic behaviour against abiotic stresses that occur in soil. This knowledge will be useful for developing strategies to improve the growth of this bacterium under stress and to enhance its bioprocess for the production of inoculants. |
---|---|
ISSN: | 0944-5013 1618-0623 |
DOI: | 10.1016/j.micres.2014.12.012 |