Tetrel–Hydride Interaction between XH3F (X = C, Si, Ge, Sn) and HM (M = Li, Na, BeH, MgH)

A tetrel–hydride interaction was predicted and characterized in the complexes of XH3F···HM (X = C, Si, Ge, Sn; M = Li, Na, BeH, MgH) at the MP2/aug-cc-pVTZ level, where XH3F and HM are treated as the Lewis acid and base, respectively. This new interaction was analyzed in terms of geometrical paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2015-03, Vol.119 (11), p.2217-2224
Hauptverfasser: Li, Qing-Zhong, Zhuo, Hong-Ying, Li, Hai-Bei, Liu, Zhen-Bo, Li, Wen-Zuo, Cheng, Jian-Bo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A tetrel–hydride interaction was predicted and characterized in the complexes of XH3F···HM (X = C, Si, Ge, Sn; M = Li, Na, BeH, MgH) at the MP2/aug-cc-pVTZ level, where XH3F and HM are treated as the Lewis acid and base, respectively. This new interaction was analyzed in terms of geometrical parameters, interaction energies, and spectroscopic characteristics of the complexes. The strength of the interaction is essentially related to the nature of X and M groups, with both the larger atomic number of X and the increased reactivity of M giving rise to a stronger tetrel–hydride interaction. The tetrel–hydride interaction exhibits similar substituent effects to that of dihydrogen bonds, where the electron-donating CH3 and Li groups in the metal hydride strengthen the binding interactions. NBO analyses demonstrate that both BDH–M → BD*X–F and BDH–M → BD*X–H orbital interactions play the stabilizing role in the formation of the complex XH3F···HM (X = C, Si, Ge, and Sn; M = Li, Na, BeH, and MgH). The major contribution to the total interaction energy is electrostatic energy for all of the complexes, even though the dispersion/polarization parts are nonnegligible for the weak/strong tetrel–hydride interaction, respectively.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp503735u