Bayesian nonparametric models for ranked set sampling

Ranked set sampling (RSS) is a data collection technique that combines measurement with judgment ranking for statistical inference. This paper lays out a formal and natural Bayesian framework for RSS that is analogous to its frequentist justification, and that does not require the assumption of perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lifetime data analysis 2015-04, Vol.21 (2), p.315-329
Hauptverfasser: Gemayel, Nader, Stasny, Elizabeth A., Wolfe, Douglas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ranked set sampling (RSS) is a data collection technique that combines measurement with judgment ranking for statistical inference. This paper lays out a formal and natural Bayesian framework for RSS that is analogous to its frequentist justification, and that does not require the assumption of perfect ranking or use of any imperfect ranking models. Prior beliefs about the judgment order statistic distributions and their interdependence are embodied by a nonparametric prior distribution. Posterior inference is carried out by means of Markov chain Monte Carlo techniques, and yields estimators of the judgment order statistic distributions (and of functionals of those distributions).
ISSN:1380-7870
1572-9249
DOI:10.1007/s10985-014-9312-x