Controlled-Release Fertilizer Prepared Using a Biodegradable Aliphatic Copolyester of Poly(butylene succinate) and Dimerized Fatty Acid

The preparation and characterization of a controlled-release multicomponent (NPK) fertilizer with the coating layer consisting of a biodegradable copolymer of poly(butylene succinate) and a butylene ester of dilinoleic acid (PBS/DLA) is reported. The morphology and structure of the resulting polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2015-03, Vol.63 (10), p.2597-2605
Hauptverfasser: Lubkowski, Krzysztof, Smorowska, Aleksandra, Grzmil, Barbara, Kozłowska, Agnieszka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The preparation and characterization of a controlled-release multicomponent (NPK) fertilizer with the coating layer consisting of a biodegradable copolymer of poly(butylene succinate) and a butylene ester of dilinoleic acid (PBS/DLA) is reported. The morphology and structure of the resulting polymer-coated materials and the thickness of the covering layers were examined using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis. The mechanical properties of these materials were determined with a strength-testing machine. Nutrient release was measured in water using spectrophotometry, potentiometry, and conductivity methods. The results of the nutrient release experiments from these polymer-coated materials were compared with the requirements for controlled-release fertilizers. A conceptual model is presented describing the mechanism of nutrient release from the materials prepared in this study. This model is based on the concentrations of mineral components inside the water-penetrated fertilizer granules, the diffusion properties of the nutrients in water, and a diffusion coefficient through the polymer layer. The experimental kinetic data on nutrient release were interpreted using the sigmoidal model equation developed in this study.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.5b00518