Purification and characterization of Ag,Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver
Cu,Zn-superoxide dismutase plays an important role in protecting cells from oxygen toxicity by catalyzing the dismutation of superoxide anion into hydrogen peroxide and oxygen. In Saccharomyces cerevisiae Cu,Zn-superoxide dismutase is coregulated with copper-thionein by copper via the transcription...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1994-10, Vol.269 (41), p.25783-25787 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cu,Zn-superoxide dismutase plays an important role in protecting cells from oxygen toxicity by catalyzing the dismutation of superoxide anion into hydrogen peroxide and oxygen. In Saccharomyces cerevisiae Cu,Zn-superoxide dismutase is coregulated with copper-thionein by copper via the transcription factor ACE 1. We demonstrate here that presence of AgNO3 in the culture medium leads to a five times increase of Cu,Zn-superoxide dismutase mRNA, with a concomitant six times decrease of the enzyme activity. Susceptibility of yeast to silver was apparently inversely related to Cu,Zn-superoxide dismutase activity. From silver-treated yeast a Cu,Zn-superoxide dismutase with impaired dismutase function was purified and was shown to contain silver, which was located to the copper site. These data suggest that Cu,Zn-superoxide dismutase may play an additional direct role in the defense of S. cerevisiae against metal stress by functioning as metal chelator. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)47316-4 |