Nonlinear dynamics of atoms in a crossed optical dipole trap

We explore the classical dynamics of atoms in an optical dipole trap formed by two identical Gaussian beams propagating in perpendicular directions. The phase space is a mixture of regular and chaotic orbits, the latter becoming dominant as the energy of the atoms increases. The trapping capabilitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-12, Vol.90 (6), p.062919-062919, Article 062919
Hauptverfasser: González-Férez, Rosario, Iñarrea, Manuel, Salas, J Pablo, Schmelcher, Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the classical dynamics of atoms in an optical dipole trap formed by two identical Gaussian beams propagating in perpendicular directions. The phase space is a mixture of regular and chaotic orbits, the latter becoming dominant as the energy of the atoms increases. The trapping capabilities of these perpendicular Gaussian beams are investigated by considering an atomic ensemble in free motion. After a sudden turn on of the dipole trap, a certain fraction of atoms in the ensemble remains trapped. The majority of these trapped atoms has energies larger than the escape channels, which can be explained by the existence of regular and chaotic orbits with very long escape times.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.90.062919