Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins
Summary Currently, numerous taxonomic units above species level of the phylum Firmicutes are ambiguously placed in the phylogeny determined by 16S rRNA gene. Here, we evaluated the use of 16S rRNA gene compared with 81 conserved proteins (CPs) or 41 ribosomal proteins (RPs) as phylogenetic markers a...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology reports 2015-04, Vol.7 (2), p.273-281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Currently, numerous taxonomic units above species level of the phylum Firmicutes are ambiguously placed in the phylogeny determined by 16S rRNA gene. Here, we evaluated the use of 16S rRNA gene compared with 81 conserved proteins (CPs) or 41 ribosomal proteins (RPs) as phylogenetic markers and applied this to the analysis of the phylum Firmicutes. Results show that the phylogenetic trees constructed are in good agreement with each other; however, the protein‐based trees are able to resolve the relationships between several branches where so far only ambiguous classifications are possible. Thus, the phylogeny deduced based on concatenated proteins provides significant basis for re‐classifying members in this phylum. It indicates that the genera Coprothermobacter and Thermodesulfobium represent two new phyla; the families Paenibacillaceae and Alicyclobacillaceae should be elevated to order level; and the families Bacillaceae and Thermodesulfobiaceae should be separated to 2 and 3 families respectively. We also suggest that four novel families should be proposed in the orders Clostridiales and Bacillales, and 11 genera should be moved to other existing families different from the current classification status. Moreover, notably, RPs are a well‐suited subset of CPs that could be applied to Firmicutes phylogenetic analysis instead of the 16S rRNA gene. |
---|---|
ISSN: | 1758-2229 1758-2229 |
DOI: | 10.1111/1758-2229.12241 |