Ionization of bromouracil and fluorouracil stimulates base mispairing frequencies with guanine

To test whether ionized base pairs influence polymerase-catalyzed misinsertion rates, we measured the efficiency of forming 5-bromouracil (B), 5-fluorouracil (F), and thymine base pairs with guanine and adenine as a function of pH using avian myeloblastosis reverse transcriptase. When B, F, and T we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1993-07, Vol.268 (21), p.15935-15943
Hauptverfasser: HONG YU, ERITJA, R, BLOOM, L. B, GOODMAN, M. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To test whether ionized base pairs influence polymerase-catalyzed misinsertion rates, we measured the efficiency of forming 5-bromouracil (B), 5-fluorouracil (F), and thymine base pairs with guanine and adenine as a function of pH using avian myeloblastosis reverse transcriptase. When B, F, and T were present as dNTP substrates, misincorporation efficiencies opposite G, normalized to incorporation of C opposite G, increased by about 20-, 13-, and 7-fold, respectively, as reaction pH increased from 7.0 to 9.5. Incorporation efficiencies to form the correct base pairs, B.A and F.A, normalized to T.A, decreased by 4- and 8-fold, respectively, with increasing pH. The effects of pH on misincorporation efficiencies were about 10-fold greater when B, F, and T were present as template bases. The relative misincorporation efficiencies of G opposite template B, F, and T, normalized to incorporation of A opposite B, F, and T, increased by about 430-, 370-, and 70-fold, respectively, as pH was increased from 6.5 to 9.5, while correct incorporation of A opposite template B and F decreased about 10-fold over the same pH range. Plots depicting incorrect and correct incorporation efficiencies versus pH were fit to a pH titration equation giving the fraction of ionized base as a function of pH. We conclude that avian myeloblastosis reverse transcriptase forms B.G and F.G mispairs in an ionized Watson-Crick conformation in preference to a neutral wobble structure containing favored keto tautomers of B or F. Although participation of disfavored enol tautomers in enzyme-catalyzed base mispair formation cannot be ruled out, the results are inconsistent with the "standard" disfavored tautomer model of mutagenesis. Instead, the data support a model in which ionization of halouracil bases is primarily responsible for B- and F-induced mutagenesis.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)82342-0