Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA

The polycistronic mRNA of the histidine operon is subject to a processing event that generates a rather stable transcript encompassing the five distal cistrons. The molecular mechanisms by which such a transcript is produced were investigated in Escherichia coli strains carrying mutations in several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 1994-12, Vol.8 (24), p.3021-3031
Hauptverfasser: Alifano, P, Rivellini, F, Piscitelli, C, Arraiano, C M, Bruni, C B, Carlomagno, M S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The polycistronic mRNA of the histidine operon is subject to a processing event that generates a rather stable transcript encompassing the five distal cistrons. The molecular mechanisms by which such a transcript is produced were investigated in Escherichia coli strains carrying mutations in several genes for exo- and endonucleases. The experimental approach made use of S1 nuclease protection assays on in vivo synthesized transcripts, site-directed mutagenesis and construction of chimeric plasmids, dissection of the processing reaction by RNA mobility retardation experiments, and in vitro RNA degradation assays with cellular extracts. We have found that processing requires (1) a functional endonuclease E; (2) target site(s) for this activity in the RNA region upstream of the 5' end of the processed transcript that can be substituted by another well-characterized rne-dependent cleavage site; (3) efficient translation initiation of the first cistron immediately downstream of the 5' end; and (4) a functional endonuclease P that seems to act on the processing products generated by ribonuclease E. This is the first evidence that ribonuclease P, an essential ribozyme required for the biosynthesis of tRNA, may also be involved in the segmental stabilization of a mRNA.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.8.24.3021