Electron-Deficient Heteroarenium Salts: An Organocatalytic Tool for Activation of Hydrogen Peroxide in Oxidations
A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substitu...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2015-03, Vol.80 (5), p.2676-2699 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substituent and is remarkable for derivatives with an electron-withdrawing group, showing reactivity comparable to that of flavinium salts which are the prominent organocatalysts for oxygenations. Because of their high stability and good accessibility, 4-(trifluoromethyl)pyrimidinium and 3,5-dinitropyridinium triflates are the catalysts of choice and were shown to catalyze oxidation of aliphatic and aromatic sulfides to sulfoxides, giving quantitative conversions, high preparative yields and excellent chemoselectivity. The high efficiency of electron-poor heteroarenium salts is rationalized by their ability to readily form adducts with nucleophiles, as documented by low pK R+ values (pK R+ < 5) and less negative reduction potentials (E red > −0.5 V). Hydrogen peroxide adducts formed in situ during catalytic oxidation act as substrate oxidizing agents. The Gibbs free energies of oxygen transfer from these heterocyclic hydroperoxides to thioanisole, obtained by calculations at the B3LYP/6-311++g(d,p) level, showed that they are much stronger oxidizing agents than alkyl hydroperoxides and in some cases are almost comparable to derivatives of flavin hydroperoxide acting as oxidizing agents in monooxygenases. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/jo502865f |