Investigation of next-generation sequencing technologies as a diagnostic tool for amyotrophic lateral sclerosis
Abstract The future of genetic diagnostics will see a move toward massively parallel next-generation sequencing of a patient's DNA. Amyotrophic lateral sclerosis (ALS) is one of the diseases that would benefit from this prospect. Exploring this idea, we designed a screening panel to sequence 25...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 2015-03, Vol.36 (3), p.1600.e5-1600.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The future of genetic diagnostics will see a move toward massively parallel next-generation sequencing of a patient's DNA. Amyotrophic lateral sclerosis (ALS) is one of the diseases that would benefit from this prospect. Exploring this idea, we designed a screening panel to sequence 25 ALS-linked genes and examined samples from 95 patients with both familial and sporadic ALS. Forty-three rare polymorphisms were detected in this cohort. A third of these have already been reported with respect to ALS, leaving 28 novel variants all open for further investigation. This study highlights the potential benefits of next-generation sequencing as a reliable, cost and time efficient, diagnostic, and research tool for ALS. |
---|---|
ISSN: | 0197-4580 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2014.12.017 |