The internalization and lysosomal degradation of brain AQP4 after ischemic injury

Abstract The membrane-bound water channel aquaporin-4 (AQP4) plays a significant role in maintaining brain water homeostasis. In ischemic brain, changes in the expression level of AQP4 have been reported. Previous studies suggest that the internalization of several membrane-bound proteins, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2013-11, Vol.1539, p.61-72
Hauptverfasser: Huang, Juan, Sun, Shan Quan, Lu, Wei Tian, Xu, Jin, Gan, Sheng Wei, Chen, Zhen, Qiu, Guo Ping, Huang, Si Qin, Zhuo, Fei, Liu, Qian, Xu, Shi Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The membrane-bound water channel aquaporin-4 (AQP4) plays a significant role in maintaining brain water homeostasis. In ischemic brain, changes in the expression level of AQP4 have been reported. Previous studies suggest that the internalization of several membrane-bound proteins, including AQP4, may occur with or without lysosomal degradation. In this study, the internalization of AQP4 was detected in the ischemic rat brain via double immunofluorescence labeling. Specifically, AQP4 and early endosome antigen-1 (EEA1) co-localized after 1 h post-ischemic injury. Moreover, the co-expression of AQP4 and lysosomal-associated membrane protein-1 (LAMP1) was observed after 3 h post-ischemia. These findings suggest that AQP4 is internalized and the lysosome is involved in degrading the internalized AQP4 in the ischemic brain. AQP4 is known to be downregulated by the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) in vivo and in vitro . The results in this study displayed that PMA infusion could decrease brain edema accompanied by AQP4 downregulation in ischemic brain. However, compared with vehicle infusion, PKC activator infusion did not increase the ratio of internalized or lysosomal degraded AQP4. That is, we have not found out evidence to prove protein kinase C activator PMA can promote the internalization or lysosomal degradation of AQP4 in the ischemic brain.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2013.09.022