Cerebral hemodynamic response to acute hyperoxia in awake mice
Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser...
Gespeichert in:
Veröffentlicht in: | Brain research 2014-04, Vol.1557, p.155-163 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | |
container_start_page | 155 |
container_title | Brain research |
container_volume | 1557 |
creator | Tajima, Yosuke Takuwa, Hiroyuki Nishino, Asuka Matsuura, Tetsuya Kawaguchi, Hiroshi Ikoma, Yoko Taniguchi, Junko Seki, Chie Masamoto, Kazuto Kanno, Iwao Saeki, Naokatsu Ito, Hiroshi |
description | Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P |
doi_str_mv | 10.1016/j.brainres.2014.01.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660411640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0006899314001413</els_id><sourcerecordid>1509411193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</originalsourceid><addsrcrecordid>eNqFkk1P3DAQhq2qqCy0fwHlgtRL0vFHnPiCQKsWkJB6AM6W48wKL4m9tRPa_ff1apci9cLJY-mZd6zHQ8gZhYoCld_WVReN8xFTxYCKCmgFNf9AFrRtWCmZgI9kAQCybJXix-QkpXW-cq7gEzlmooZWgVqQiyVGzFFD8YRj6LfejM4WOXYTfMJiCoWx84TF03aDMfxxpnC-ML_NMxYZxM_kaGWGhF8O5yl5_PH9YXlT3v28vl1e3ZW25jCVhqkObcNF3QJy0YnGGtmyFYeG170BBa1slAXZWdWxpsu1YjyXRvSqkR0_JV_3uZsYfs2YJj26ZHEYjMcwJ02lBEGpFPA-WoPKKFU8o3KP2hhSirjSm-hGE7eagt5p1mv9qlnvNGugOmvOjWeHGXM3Yv-v7dVrBs4PgEnWDKtovHXpjWulYlCzzF3uOczyXhxGnaxDb7F3Ee2k--Def8vFfxF2cN7lqc-4xbQOc_T5azTViWnQ97ul2O0EFZBTKOd_AdncsZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509411193</pqid></control><display><type>article</type><title>Cerebral hemodynamic response to acute hyperoxia in awake mice</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tajima, Yosuke ; Takuwa, Hiroyuki ; Nishino, Asuka ; Matsuura, Tetsuya ; Kawaguchi, Hiroshi ; Ikoma, Yoko ; Taniguchi, Junko ; Seki, Chie ; Masamoto, Kazuto ; Kanno, Iwao ; Saeki, Naokatsu ; Ito, Hiroshi</creator><creatorcontrib>Tajima, Yosuke ; Takuwa, Hiroyuki ; Nishino, Asuka ; Matsuura, Tetsuya ; Kawaguchi, Hiroshi ; Ikoma, Yoko ; Taniguchi, Junko ; Seki, Chie ; Masamoto, Kazuto ; Kanno, Iwao ; Saeki, Naokatsu ; Ito, Hiroshi</creatorcontrib><description>Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P <0.05). TPLSM imaging of the somatosensory cortex showed vasconstriction in arterioles and capillaries during hyperoxia. Since the effective diffusivity for oxygen in the capillary bed might decrease by hyperoxia due to a decrease in capillary blood volume according to Hyder׳s model, an increase in the cerebral metabolic rate of oxygen utilization by neural activation during hyperoxia might need a greater increase in CBF as compared with normoxia. The hemodynamic response to neural activation could be modified by acute hyperoxia due to modification of the relation between changes in CBF and oxygen consumption by neural activation.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2014.01.053</identifier><identifier>PMID: 24508909</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acute Disease ; Acute hyperoxia ; Animals ; Arterioles - physiopathology ; Biological and medical sciences ; Blood Gas Analysis ; Blood Volume - physiology ; Capillaries - physiopathology ; Cerebral blood flow ; Cerebrovascular Circulation - physiology ; Fundamental and applied biological sciences. Psychology ; Hyperoxia - physiopathology ; Laser-Doppler Flowmetry ; Male ; Mice ; Mice, Inbred C57BL ; Mouse ; Neural activation ; Neurology ; Oxygen Consumption - physiology ; Physical Stimulation ; Somatosensory Cortex - blood supply ; Somatosensory Cortex - physiopathology ; Touch Perception - physiology ; Two-photon laser scanning microscopy ; Vasoconstriction - physiology ; Vertebrates: nervous system and sense organs ; Vibrissae - physiology ; Wakefulness - physiology</subject><ispartof>Brain research, 2014-04, Vol.1557, p.155-163</ispartof><rights>Elsevier B.V.</rights><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</citedby><cites>FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</cites><orcidid>0000-0002-1496-2812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainres.2014.01.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28692052$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24508909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tajima, Yosuke</creatorcontrib><creatorcontrib>Takuwa, Hiroyuki</creatorcontrib><creatorcontrib>Nishino, Asuka</creatorcontrib><creatorcontrib>Matsuura, Tetsuya</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ikoma, Yoko</creatorcontrib><creatorcontrib>Taniguchi, Junko</creatorcontrib><creatorcontrib>Seki, Chie</creatorcontrib><creatorcontrib>Masamoto, Kazuto</creatorcontrib><creatorcontrib>Kanno, Iwao</creatorcontrib><creatorcontrib>Saeki, Naokatsu</creatorcontrib><creatorcontrib>Ito, Hiroshi</creatorcontrib><title>Cerebral hemodynamic response to acute hyperoxia in awake mice</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P <0.05). TPLSM imaging of the somatosensory cortex showed vasconstriction in arterioles and capillaries during hyperoxia. Since the effective diffusivity for oxygen in the capillary bed might decrease by hyperoxia due to a decrease in capillary blood volume according to Hyder׳s model, an increase in the cerebral metabolic rate of oxygen utilization by neural activation during hyperoxia might need a greater increase in CBF as compared with normoxia. The hemodynamic response to neural activation could be modified by acute hyperoxia due to modification of the relation between changes in CBF and oxygen consumption by neural activation.</description><subject>Acute Disease</subject><subject>Acute hyperoxia</subject><subject>Animals</subject><subject>Arterioles - physiopathology</subject><subject>Biological and medical sciences</subject><subject>Blood Gas Analysis</subject><subject>Blood Volume - physiology</subject><subject>Capillaries - physiopathology</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hyperoxia - physiopathology</subject><subject>Laser-Doppler Flowmetry</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mouse</subject><subject>Neural activation</subject><subject>Neurology</subject><subject>Oxygen Consumption - physiology</subject><subject>Physical Stimulation</subject><subject>Somatosensory Cortex - blood supply</subject><subject>Somatosensory Cortex - physiopathology</subject><subject>Touch Perception - physiology</subject><subject>Two-photon laser scanning microscopy</subject><subject>Vasoconstriction - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vibrissae - physiology</subject><subject>Wakefulness - physiology</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1P3DAQhq2qqCy0fwHlgtRL0vFHnPiCQKsWkJB6AM6W48wKL4m9tRPa_ff1apci9cLJY-mZd6zHQ8gZhYoCld_WVReN8xFTxYCKCmgFNf9AFrRtWCmZgI9kAQCybJXix-QkpXW-cq7gEzlmooZWgVqQiyVGzFFD8YRj6LfejM4WOXYTfMJiCoWx84TF03aDMfxxpnC-ML_NMxYZxM_kaGWGhF8O5yl5_PH9YXlT3v28vl1e3ZW25jCVhqkObcNF3QJy0YnGGtmyFYeG170BBa1slAXZWdWxpsu1YjyXRvSqkR0_JV_3uZsYfs2YJj26ZHEYjMcwJ02lBEGpFPA-WoPKKFU8o3KP2hhSirjSm-hGE7eagt5p1mv9qlnvNGugOmvOjWeHGXM3Yv-v7dVrBs4PgEnWDKtovHXpjWulYlCzzF3uOczyXhxGnaxDb7F3Ee2k--Def8vFfxF2cN7lqc-4xbQOc_T5azTViWnQ97ul2O0EFZBTKOd_AdncsZQ</recordid><startdate>20140404</startdate><enddate>20140404</enddate><creator>Tajima, Yosuke</creator><creator>Takuwa, Hiroyuki</creator><creator>Nishino, Asuka</creator><creator>Matsuura, Tetsuya</creator><creator>Kawaguchi, Hiroshi</creator><creator>Ikoma, Yoko</creator><creator>Taniguchi, Junko</creator><creator>Seki, Chie</creator><creator>Masamoto, Kazuto</creator><creator>Kanno, Iwao</creator><creator>Saeki, Naokatsu</creator><creator>Ito, Hiroshi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0002-1496-2812</orcidid></search><sort><creationdate>20140404</creationdate><title>Cerebral hemodynamic response to acute hyperoxia in awake mice</title><author>Tajima, Yosuke ; Takuwa, Hiroyuki ; Nishino, Asuka ; Matsuura, Tetsuya ; Kawaguchi, Hiroshi ; Ikoma, Yoko ; Taniguchi, Junko ; Seki, Chie ; Masamoto, Kazuto ; Kanno, Iwao ; Saeki, Naokatsu ; Ito, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acute Disease</topic><topic>Acute hyperoxia</topic><topic>Animals</topic><topic>Arterioles - physiopathology</topic><topic>Biological and medical sciences</topic><topic>Blood Gas Analysis</topic><topic>Blood Volume - physiology</topic><topic>Capillaries - physiopathology</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hyperoxia - physiopathology</topic><topic>Laser-Doppler Flowmetry</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mouse</topic><topic>Neural activation</topic><topic>Neurology</topic><topic>Oxygen Consumption - physiology</topic><topic>Physical Stimulation</topic><topic>Somatosensory Cortex - blood supply</topic><topic>Somatosensory Cortex - physiopathology</topic><topic>Touch Perception - physiology</topic><topic>Two-photon laser scanning microscopy</topic><topic>Vasoconstriction - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vibrissae - physiology</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tajima, Yosuke</creatorcontrib><creatorcontrib>Takuwa, Hiroyuki</creatorcontrib><creatorcontrib>Nishino, Asuka</creatorcontrib><creatorcontrib>Matsuura, Tetsuya</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ikoma, Yoko</creatorcontrib><creatorcontrib>Taniguchi, Junko</creatorcontrib><creatorcontrib>Seki, Chie</creatorcontrib><creatorcontrib>Masamoto, Kazuto</creatorcontrib><creatorcontrib>Kanno, Iwao</creatorcontrib><creatorcontrib>Saeki, Naokatsu</creatorcontrib><creatorcontrib>Ito, Hiroshi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajima, Yosuke</au><au>Takuwa, Hiroyuki</au><au>Nishino, Asuka</au><au>Matsuura, Tetsuya</au><au>Kawaguchi, Hiroshi</au><au>Ikoma, Yoko</au><au>Taniguchi, Junko</au><au>Seki, Chie</au><au>Masamoto, Kazuto</au><au>Kanno, Iwao</au><au>Saeki, Naokatsu</au><au>Ito, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cerebral hemodynamic response to acute hyperoxia in awake mice</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2014-04-04</date><risdate>2014</risdate><volume>1557</volume><spage>155</spage><epage>163</epage><pages>155-163</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P <0.05). TPLSM imaging of the somatosensory cortex showed vasconstriction in arterioles and capillaries during hyperoxia. Since the effective diffusivity for oxygen in the capillary bed might decrease by hyperoxia due to a decrease in capillary blood volume according to Hyder׳s model, an increase in the cerebral metabolic rate of oxygen utilization by neural activation during hyperoxia might need a greater increase in CBF as compared with normoxia. The hemodynamic response to neural activation could be modified by acute hyperoxia due to modification of the relation between changes in CBF and oxygen consumption by neural activation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>24508909</pmid><doi>10.1016/j.brainres.2014.01.053</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1496-2812</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8993 |
ispartof | Brain research, 2014-04, Vol.1557, p.155-163 |
issn | 0006-8993 1872-6240 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660411640 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acute Disease Acute hyperoxia Animals Arterioles - physiopathology Biological and medical sciences Blood Gas Analysis Blood Volume - physiology Capillaries - physiopathology Cerebral blood flow Cerebrovascular Circulation - physiology Fundamental and applied biological sciences. Psychology Hyperoxia - physiopathology Laser-Doppler Flowmetry Male Mice Mice, Inbred C57BL Mouse Neural activation Neurology Oxygen Consumption - physiology Physical Stimulation Somatosensory Cortex - blood supply Somatosensory Cortex - physiopathology Touch Perception - physiology Two-photon laser scanning microscopy Vasoconstriction - physiology Vertebrates: nervous system and sense organs Vibrissae - physiology Wakefulness - physiology |
title | Cerebral hemodynamic response to acute hyperoxia in awake mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cerebral%20hemodynamic%20response%20to%20acute%20hyperoxia%20in%20awake%20mice&rft.jtitle=Brain%20research&rft.au=Tajima,%20Yosuke&rft.date=2014-04-04&rft.volume=1557&rft.spage=155&rft.epage=163&rft.pages=155-163&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/j.brainres.2014.01.053&rft_dat=%3Cproquest_cross%3E1509411193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509411193&rft_id=info:pmid/24508909&rft_els_id=1_s2_0_S0006899314001413&rfr_iscdi=true |