Cerebral hemodynamic response to acute hyperoxia in awake mice

Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2014-04, Vol.1557, p.155-163
Hauptverfasser: Tajima, Yosuke, Takuwa, Hiroyuki, Nishino, Asuka, Matsuura, Tetsuya, Kawaguchi, Hiroshi, Ikoma, Yoko, Taniguchi, Junko, Seki, Chie, Masamoto, Kazuto, Kanno, Iwao, Saeki, Naokatsu, Ito, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue
container_start_page 155
container_title Brain research
container_volume 1557
creator Tajima, Yosuke
Takuwa, Hiroyuki
Nishino, Asuka
Matsuura, Tetsuya
Kawaguchi, Hiroshi
Ikoma, Yoko
Taniguchi, Junko
Seki, Chie
Masamoto, Kazuto
Kanno, Iwao
Saeki, Naokatsu
Ito, Hiroshi
description Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P
doi_str_mv 10.1016/j.brainres.2014.01.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660411640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0006899314001413</els_id><sourcerecordid>1509411193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</originalsourceid><addsrcrecordid>eNqFkk1P3DAQhq2qqCy0fwHlgtRL0vFHnPiCQKsWkJB6AM6W48wKL4m9tRPa_ff1apci9cLJY-mZd6zHQ8gZhYoCld_WVReN8xFTxYCKCmgFNf9AFrRtWCmZgI9kAQCybJXix-QkpXW-cq7gEzlmooZWgVqQiyVGzFFD8YRj6LfejM4WOXYTfMJiCoWx84TF03aDMfxxpnC-ML_NMxYZxM_kaGWGhF8O5yl5_PH9YXlT3v28vl1e3ZW25jCVhqkObcNF3QJy0YnGGtmyFYeG170BBa1slAXZWdWxpsu1YjyXRvSqkR0_JV_3uZsYfs2YJj26ZHEYjMcwJ02lBEGpFPA-WoPKKFU8o3KP2hhSirjSm-hGE7eagt5p1mv9qlnvNGugOmvOjWeHGXM3Yv-v7dVrBs4PgEnWDKtovHXpjWulYlCzzF3uOczyXhxGnaxDb7F3Ee2k--Def8vFfxF2cN7lqc-4xbQOc_T5azTViWnQ97ul2O0EFZBTKOd_AdncsZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509411193</pqid></control><display><type>article</type><title>Cerebral hemodynamic response to acute hyperoxia in awake mice</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tajima, Yosuke ; Takuwa, Hiroyuki ; Nishino, Asuka ; Matsuura, Tetsuya ; Kawaguchi, Hiroshi ; Ikoma, Yoko ; Taniguchi, Junko ; Seki, Chie ; Masamoto, Kazuto ; Kanno, Iwao ; Saeki, Naokatsu ; Ito, Hiroshi</creator><creatorcontrib>Tajima, Yosuke ; Takuwa, Hiroyuki ; Nishino, Asuka ; Matsuura, Tetsuya ; Kawaguchi, Hiroshi ; Ikoma, Yoko ; Taniguchi, Junko ; Seki, Chie ; Masamoto, Kazuto ; Kanno, Iwao ; Saeki, Naokatsu ; Ito, Hiroshi</creatorcontrib><description>Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P &lt;0.05). TPLSM imaging of the somatosensory cortex showed vasconstriction in arterioles and capillaries during hyperoxia. Since the effective diffusivity for oxygen in the capillary bed might decrease by hyperoxia due to a decrease in capillary blood volume according to Hyder׳s model, an increase in the cerebral metabolic rate of oxygen utilization by neural activation during hyperoxia might need a greater increase in CBF as compared with normoxia. The hemodynamic response to neural activation could be modified by acute hyperoxia due to modification of the relation between changes in CBF and oxygen consumption by neural activation.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2014.01.053</identifier><identifier>PMID: 24508909</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acute Disease ; Acute hyperoxia ; Animals ; Arterioles - physiopathology ; Biological and medical sciences ; Blood Gas Analysis ; Blood Volume - physiology ; Capillaries - physiopathology ; Cerebral blood flow ; Cerebrovascular Circulation - physiology ; Fundamental and applied biological sciences. Psychology ; Hyperoxia - physiopathology ; Laser-Doppler Flowmetry ; Male ; Mice ; Mice, Inbred C57BL ; Mouse ; Neural activation ; Neurology ; Oxygen Consumption - physiology ; Physical Stimulation ; Somatosensory Cortex - blood supply ; Somatosensory Cortex - physiopathology ; Touch Perception - physiology ; Two-photon laser scanning microscopy ; Vasoconstriction - physiology ; Vertebrates: nervous system and sense organs ; Vibrissae - physiology ; Wakefulness - physiology</subject><ispartof>Brain research, 2014-04, Vol.1557, p.155-163</ispartof><rights>Elsevier B.V.</rights><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</citedby><cites>FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</cites><orcidid>0000-0002-1496-2812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainres.2014.01.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28692052$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24508909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tajima, Yosuke</creatorcontrib><creatorcontrib>Takuwa, Hiroyuki</creatorcontrib><creatorcontrib>Nishino, Asuka</creatorcontrib><creatorcontrib>Matsuura, Tetsuya</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ikoma, Yoko</creatorcontrib><creatorcontrib>Taniguchi, Junko</creatorcontrib><creatorcontrib>Seki, Chie</creatorcontrib><creatorcontrib>Masamoto, Kazuto</creatorcontrib><creatorcontrib>Kanno, Iwao</creatorcontrib><creatorcontrib>Saeki, Naokatsu</creatorcontrib><creatorcontrib>Ito, Hiroshi</creatorcontrib><title>Cerebral hemodynamic response to acute hyperoxia in awake mice</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P &lt;0.05). TPLSM imaging of the somatosensory cortex showed vasconstriction in arterioles and capillaries during hyperoxia. Since the effective diffusivity for oxygen in the capillary bed might decrease by hyperoxia due to a decrease in capillary blood volume according to Hyder׳s model, an increase in the cerebral metabolic rate of oxygen utilization by neural activation during hyperoxia might need a greater increase in CBF as compared with normoxia. The hemodynamic response to neural activation could be modified by acute hyperoxia due to modification of the relation between changes in CBF and oxygen consumption by neural activation.</description><subject>Acute Disease</subject><subject>Acute hyperoxia</subject><subject>Animals</subject><subject>Arterioles - physiopathology</subject><subject>Biological and medical sciences</subject><subject>Blood Gas Analysis</subject><subject>Blood Volume - physiology</subject><subject>Capillaries - physiopathology</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hyperoxia - physiopathology</subject><subject>Laser-Doppler Flowmetry</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mouse</subject><subject>Neural activation</subject><subject>Neurology</subject><subject>Oxygen Consumption - physiology</subject><subject>Physical Stimulation</subject><subject>Somatosensory Cortex - blood supply</subject><subject>Somatosensory Cortex - physiopathology</subject><subject>Touch Perception - physiology</subject><subject>Two-photon laser scanning microscopy</subject><subject>Vasoconstriction - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vibrissae - physiology</subject><subject>Wakefulness - physiology</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1P3DAQhq2qqCy0fwHlgtRL0vFHnPiCQKsWkJB6AM6W48wKL4m9tRPa_ff1apci9cLJY-mZd6zHQ8gZhYoCld_WVReN8xFTxYCKCmgFNf9AFrRtWCmZgI9kAQCybJXix-QkpXW-cq7gEzlmooZWgVqQiyVGzFFD8YRj6LfejM4WOXYTfMJiCoWx84TF03aDMfxxpnC-ML_NMxYZxM_kaGWGhF8O5yl5_PH9YXlT3v28vl1e3ZW25jCVhqkObcNF3QJy0YnGGtmyFYeG170BBa1slAXZWdWxpsu1YjyXRvSqkR0_JV_3uZsYfs2YJj26ZHEYjMcwJ02lBEGpFPA-WoPKKFU8o3KP2hhSirjSm-hGE7eagt5p1mv9qlnvNGugOmvOjWeHGXM3Yv-v7dVrBs4PgEnWDKtovHXpjWulYlCzzF3uOczyXhxGnaxDb7F3Ee2k--Def8vFfxF2cN7lqc-4xbQOc_T5azTViWnQ97ul2O0EFZBTKOd_AdncsZQ</recordid><startdate>20140404</startdate><enddate>20140404</enddate><creator>Tajima, Yosuke</creator><creator>Takuwa, Hiroyuki</creator><creator>Nishino, Asuka</creator><creator>Matsuura, Tetsuya</creator><creator>Kawaguchi, Hiroshi</creator><creator>Ikoma, Yoko</creator><creator>Taniguchi, Junko</creator><creator>Seki, Chie</creator><creator>Masamoto, Kazuto</creator><creator>Kanno, Iwao</creator><creator>Saeki, Naokatsu</creator><creator>Ito, Hiroshi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0002-1496-2812</orcidid></search><sort><creationdate>20140404</creationdate><title>Cerebral hemodynamic response to acute hyperoxia in awake mice</title><author>Tajima, Yosuke ; Takuwa, Hiroyuki ; Nishino, Asuka ; Matsuura, Tetsuya ; Kawaguchi, Hiroshi ; Ikoma, Yoko ; Taniguchi, Junko ; Seki, Chie ; Masamoto, Kazuto ; Kanno, Iwao ; Saeki, Naokatsu ; Ito, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-a29bec734580e34b47ca682f30735da0908679c06bc9b27b79c9239b2a4d976b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acute Disease</topic><topic>Acute hyperoxia</topic><topic>Animals</topic><topic>Arterioles - physiopathology</topic><topic>Biological and medical sciences</topic><topic>Blood Gas Analysis</topic><topic>Blood Volume - physiology</topic><topic>Capillaries - physiopathology</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hyperoxia - physiopathology</topic><topic>Laser-Doppler Flowmetry</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mouse</topic><topic>Neural activation</topic><topic>Neurology</topic><topic>Oxygen Consumption - physiology</topic><topic>Physical Stimulation</topic><topic>Somatosensory Cortex - blood supply</topic><topic>Somatosensory Cortex - physiopathology</topic><topic>Touch Perception - physiology</topic><topic>Two-photon laser scanning microscopy</topic><topic>Vasoconstriction - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vibrissae - physiology</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tajima, Yosuke</creatorcontrib><creatorcontrib>Takuwa, Hiroyuki</creatorcontrib><creatorcontrib>Nishino, Asuka</creatorcontrib><creatorcontrib>Matsuura, Tetsuya</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ikoma, Yoko</creatorcontrib><creatorcontrib>Taniguchi, Junko</creatorcontrib><creatorcontrib>Seki, Chie</creatorcontrib><creatorcontrib>Masamoto, Kazuto</creatorcontrib><creatorcontrib>Kanno, Iwao</creatorcontrib><creatorcontrib>Saeki, Naokatsu</creatorcontrib><creatorcontrib>Ito, Hiroshi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajima, Yosuke</au><au>Takuwa, Hiroyuki</au><au>Nishino, Asuka</au><au>Matsuura, Tetsuya</au><au>Kawaguchi, Hiroshi</au><au>Ikoma, Yoko</au><au>Taniguchi, Junko</au><au>Seki, Chie</au><au>Masamoto, Kazuto</au><au>Kanno, Iwao</au><au>Saeki, Naokatsu</au><au>Ito, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cerebral hemodynamic response to acute hyperoxia in awake mice</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2014-04-04</date><risdate>2014</risdate><volume>1557</volume><spage>155</spage><epage>163</epage><pages>155-163</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Abstract Cerebral hemodynamic response to acute hyperoxia was investigated in awake mice. Using laser-Doppler flowmetry (LDF), baseline cerebral blood flow (CBF) and the cerebrovascular responses to whisker stimulation were measured in awake mice during normoxia and hyperoxia. Using two-photon laser scanning microscopy (TPLSM), the changes in cortical microvasculature were measured during normoxia and hyperoxia. During hyperoxia ( Pa O2 =482.3±19.7 mmHg), baseline CBF was 6.8% lower than normoxia ( Pa O2 =97.3±6.0 mmHg). The degree of increase in CBF evoked by whisker stimulation was greater during hyperoxia (18.1±5.0%) than normoxia (13.1±3.5%) ( P &lt;0.05). TPLSM imaging of the somatosensory cortex showed vasconstriction in arterioles and capillaries during hyperoxia. Since the effective diffusivity for oxygen in the capillary bed might decrease by hyperoxia due to a decrease in capillary blood volume according to Hyder׳s model, an increase in the cerebral metabolic rate of oxygen utilization by neural activation during hyperoxia might need a greater increase in CBF as compared with normoxia. The hemodynamic response to neural activation could be modified by acute hyperoxia due to modification of the relation between changes in CBF and oxygen consumption by neural activation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>24508909</pmid><doi>10.1016/j.brainres.2014.01.053</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1496-2812</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2014-04, Vol.1557, p.155-163
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_1660411640
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acute Disease
Acute hyperoxia
Animals
Arterioles - physiopathology
Biological and medical sciences
Blood Gas Analysis
Blood Volume - physiology
Capillaries - physiopathology
Cerebral blood flow
Cerebrovascular Circulation - physiology
Fundamental and applied biological sciences. Psychology
Hyperoxia - physiopathology
Laser-Doppler Flowmetry
Male
Mice
Mice, Inbred C57BL
Mouse
Neural activation
Neurology
Oxygen Consumption - physiology
Physical Stimulation
Somatosensory Cortex - blood supply
Somatosensory Cortex - physiopathology
Touch Perception - physiology
Two-photon laser scanning microscopy
Vasoconstriction - physiology
Vertebrates: nervous system and sense organs
Vibrissae - physiology
Wakefulness - physiology
title Cerebral hemodynamic response to acute hyperoxia in awake mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cerebral%20hemodynamic%20response%20to%20acute%20hyperoxia%20in%20awake%20mice&rft.jtitle=Brain%20research&rft.au=Tajima,%20Yosuke&rft.date=2014-04-04&rft.volume=1557&rft.spage=155&rft.epage=163&rft.pages=155-163&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/j.brainres.2014.01.053&rft_dat=%3Cproquest_cross%3E1509411193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509411193&rft_id=info:pmid/24508909&rft_els_id=1_s2_0_S0006899314001413&rfr_iscdi=true