Selecting GCM Scenarios that Span the Range of Changes in a Multimodel Ensemble: Application to CMIP5 Climate Extremes Indices

Logistical constraints can limit the number of global climate model (GCM) simulations considered in a climate change impact assessment. When dealing with annual or seasonal variables, one can visualize and manually select GCM scenarios to cover as much of the ensemble’s range of changes as possible....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2015-02, Vol.28 (3), p.1260-1267
1. Verfasser: CANNON, ALEX J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Logistical constraints can limit the number of global climate model (GCM) simulations considered in a climate change impact assessment. When dealing with annual or seasonal variables, one can visualize and manually select GCM scenarios to cover as much of the ensemble’s range of changes as possible. Most environmental systems are sensitive to climate conditions (e.g., extremes) that cannot be described by a small number of variables. Instead, algorithms likek-means clustering have been used to select representative ensemble members. Clustering algorithms are, however, biased toward high-density regions of climate variable space and tend to select scenarios that describe the central tendency rather than the full spread of an ensemble. Also, scenarios selected via clustering may not be ordered: that is, scenarios in the five-cluster solution may not appear in the six-cluster solution, which makes recommending a consistent set of scenarios to researchers with different needs difficult. Alternatively, an automated procedure based on a cluster initialization algorithm is proposed and applied to changes in 27 climate extremes indices between 1986–2005 and 2081–2100 from a large ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations. Selections by the method are ordered and are designed to span the overall range of the ensemble. The number of scenarios required to account for changes spanned by at least 90% of the CMIP5 ensemble members is reported for 21 regions of the globe and compared withk-means clustering. On average, the proposed method requires 40% fewer scenarios to meet this threshold thank-means clustering does.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-14-00636.1