In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin
[Display omitted] The objective of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) for the model peptide drug leuprorelin to prove a protective effect against luminal enzymatic metabolism. In order to incorporate leuprorelin into microemulsion droplets (o/w), the comm...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2014-09, Vol.472 (1-2), p.20-26 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The objective of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) for the model peptide drug leuprorelin to prove a protective effect against luminal enzymatic metabolism. In order to incorporate leuprorelin into microemulsion droplets (o/w), the commercially available hydrophilic leuprolide acetate was modified by hydrophobic ion paring with sodium oleate. The obtained hydrophobic leuprolide oleate was dissolved in the SMEDDS formulation (30% (m/m) Cremophor EL, 30% (m/m) Capmul MCM, 10% (m/m) propylene glycol and 30% (m/m) Captex 355) in a concentration of 4mg/g showing a mean droplet size of 50.1nm when dispersed in a concentration of 1% (m/v) in phosphate buffer pH 6.8. The microemulsion was able to shield leuprolide oleate from enzymatic degradation by trypsin and α-chymotrypsin, so that after 120min 52.9% and 58.4%, respectively, of leuprolide oleate were still intact. Leuprolide acetate dissolved in an aqueous control solution was completely metabolized by trypsin within 60min and by α-chymotrypsin within 5min. Moreover, an in vivo study in rats showed a 17.2-fold improved oral bioavailability of leuprolide oleate SMEDDS compared to a leuprolide acetate control solution. This is the first time, to our knowledge, that hydrophobic ion pairing is utilized in order to incorporate a peptide drug in SMEDDS and evidence of a protective effect of oil-in-water (o/w) microemulsion droplets against enzymatic degradation of a peptide drug was provided. According to these results, the system could be likely a novel platform technology to improve the oral bioavailability of peptide drugs. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2014.05.047 |