An accuracy assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States

Although fire is a common disturbance in shrub–steppe, few studies have specifically tested burned area mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub–st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of wildland fire 2015-01, Vol.24 (1), p.70-78
Hauptverfasser: Sparks, Aaron M., Boschetti, Luigi, Smith, Alistair M. S., Tinkham, Wade T., Lannom, Karen O., Newingham, Beth A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although fire is a common disturbance in shrub–steppe, few studies have specifically tested burned area mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub–steppe fires that exhibited varying degrees of within-fire patch heterogeneity. Independent burned area perimeters were derived through visual interpretation and were used to cross-compare the MTBS burned area perimeters with classifications produced using set thresholds on the Relativised differenced Normalised Burn Index (RdNBR), Mid-infrared Burn Index (MIRBI) and Char Soil Index (CSI). Overall, CSI provided the most consistent accuracies (96.3–98.6%), with only small commission errors (1.5–4.4%). MIRBI also had relatively high accuracies (92.2–97.9%) and small commission errors (2.1–10.8%). The MTBS burned area product had higher commission errors (4.3–15.5%), primarily due to inclusion of unburned islands and fingers within the fire perimeter. The RdNBR burned area maps exhibited lower accuracies (92.9–96.0%). However, the different indices when constrained by the MTBS perimeter provided variable results, with CSI providing the highest and least variable accuracies (97.4–99.1%). Studies seeking to use MTBS perimeters to analyse trends in burned area should apply spectral indices to constrain the final burned area maps. The present paper replaces a former paper of the same title (http://dx.doi.org/10.1071/WF13206), which was withdrawn owing to errors discovered in data analysis after the paper was accepted for publication.
ISSN:1049-8001
1448-5516
DOI:10.1071/WF14131