A novel ibuprofen derivative with anti-lung cancer properties: Synthesis, formulation, pharmacokinetic and efficacy studies
[Display omitted] Phospho-non-steroidal anti-inflammatory drugs (phospho-NSAIDs) are a novel class of NSAID derivatives with potent antitumor activity. However, phospho-NSAIDs have limited stability in vivo due to their rapid hydrolysis by carboxylesterases at their carboxylic ester link. Here, we s...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2014-12, Vol.477 (1-2), p.236-243 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Phospho-non-steroidal anti-inflammatory drugs (phospho-NSAIDs) are a novel class of NSAID derivatives with potent antitumor activity. However, phospho-NSAIDs have limited stability in vivo due to their rapid hydrolysis by carboxylesterases at their carboxylic ester link. Here, we synthesized phospho-ibuprofen amide (PIA), a metabolically stable analog of phospho-ibuprofen, formulated it in nanocarriers, and evaluated its pharmacokinetics and anticancer efficacy in pre-clinical models of human lung cancer. PIA was 10-fold more potent than ibuprofen in suppressing the growth of human non-small-cell lung cancer (NSCLC) cell lines, an effect mediated by favorably altering cytokinetics and inducing oxidative stress. Pharmacokinetic studies in rats revealed that liposome-encapsulated PIA exhibited remarkable resistance to hydrolysis by carboxylesterases, remaining largely intact in the systemic circulation, and demonstrated selective distribution to the lungs. The antitumor activity of liposomal PIA was evaluated in a metastatic model of human NSCLC in mice. Liposomal PIA strongly inhibited lung tumorigenesis (>95%) and was significantly (p |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2014.10.019 |