Exploring human 40S ribosomal proteins binding to the 18S rRNA fragment containing major 3′-terminal domain

Association of ribosomal proteins with rRNA during assembly of ribosomal subunits is an intricate process, which is strictly regulated in vivo. As for the assembly in vitro, it was reported so far only for prokaryotic subunits. Bacterial ribosomal proteins are capable of selective binding to 16S rRN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2015-02, Vol.1854 (2), p.101-109
Hauptverfasser: Gopanenko, Alexander V., Malygin, Alexey A., Karpova, Galina G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Association of ribosomal proteins with rRNA during assembly of ribosomal subunits is an intricate process, which is strictly regulated in vivo. As for the assembly in vitro, it was reported so far only for prokaryotic subunits. Bacterial ribosomal proteins are capable of selective binding to 16S rRNA as well as to its separate morphological domains. In this work, we explored binding of total protein of human 40S ribosomal subunit to the RNA transcript corresponding to the major 3′-domain of 18S rRNA. We showed that the resulting ribonucleoprotein particles contained almost all of the expected ribosomal proteins, whose binding sites are located in this 18S rRNA domain in the 40S subunit, together with several nonspecific proteins. The binding in solution was accompanied with aggregation of the RNA–protein complexes. Ribosomal proteins bound to the RNA transcript protected from chemical modification mostly those 18S rRNA nucleotides that are known to be involved in binding with the proteins in the 40S subunit and thereby demonstrated their ability to selectively bind to the rRNA in vitro. The possible implication of unstructured extensions of eukaryotic ribosomal proteins in their nonspecific binding with rRNA and in subsequent aggregation of the resulting complexes is discussed. •Binding of human 40S ribosome proteins to the major 3′ domain of 18S rRNA was studied.•In vitro reconstitution of the 40S ribosomal subunit head was performed.•Role of the unstructured extensions of r-proteins in RNP aggregation is discussed.
ISSN:1570-9639
0006-3002
1878-1454
DOI:10.1016/j.bbapap.2014.11.001