Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center

The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to tho oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1993-12, Vol.32 (49), p.13742-13748
Hauptverfasser: Tang, Xiao Song, Chisholm, Dexter A, Dismukes, G. Charles, Brudvig, Gary W, Diner, Bruce A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13748
container_issue 49
container_start_page 13742
container_title Biochemistry (Easton)
container_volume 32
creator Tang, Xiao Song
Chisholm, Dexter A
Dismukes, G. Charles
Brudvig, Gary W
Diner, Bruce A
description The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to tho oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of each of the two homologous polypeptides, D1 and D2, that comprise the reaction center. Tyrosine D of polypeptide D2 has been proposed, upon oxidation, to give up its phenolic proton to a nearby basic amino acid residue, forming a neutral radical. Modeling studies have pointed to His190 (spinach numbering) as a likely candidate for this basic residue. As a test of this hypothesis, we have constructed three site-directed mutations in the D2 polypeptide of the cyanobacterium Synechocystis sp. PCC6803. His189 (the Synechocystis homologue of His190 of spinach) has been replaced by glutamine, aspartate, or leucine. Instead of the normal D.EPR signal (g = 2.0046; line width 16-19 G), PSII core complexes isolated from these three mutants show an altered dark-stable EPR signal with a narrowed line width (11-13 G), and g values of 2.0046, 2.0043, and 2.0042 for the His189Gln, His189Asp, and His189Leu mutants, respectively. Despite the reduced line width, these EPR signals show g values and microwave-power saturation properties similar to the normal D. signal. Furthermore, specific deuteration in one of those mutants at the 3 and 5 positions of the phenol ring of the photosystem II reaction center tyrosines results in a loss of hyperfine structure of the EPR signal, proving that the signal indeed arises from tyrosine. Proton-endor studies of these tyrosine radicals show that one hyperfine coupling component of 3.5-3.6 MHz, observed in the wild-type strain disappears in all three mutants. Upon incubation of wild-type photosystem II core complexes in D2O, this hyperfine coupling is lost, indicating that it originates from an exchangeable proton, mos
doi_str_mv 10.1021/bi00212a045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16602627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16602627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-bd7a440c341bd95daab92374c89cd09923b7ab46a71f9f82203bfa638d8479583</originalsourceid><addsrcrecordid>eNptksGO0zAQhiMEWsrCiRsSkg8IDhBwEieOj6hAqVhgpe5K3KyJPaFekjjYTtm-Kw-DQ6uKA6ex_X_-ZzzjJHmc0dcZzbM3jaEx5EBZeSdZZGVOUyZEeTdZUEqrNBcVvZ888P4mbhnl7Cw5q_OScyoWye_NiCo465UdjSK4MxoHhaR1tifeBEy1cZFATfopwBA8sS3Z7AdUW6v2PhhPLpfLqqYFMQNpYWfdTABRnfUYzwI6UMHYgTQYfiEOZGviNW0GJFktCAyaONT2Np2xHZKwj-X8VSv6ijQ2bGfD0Xb7Ecd4Ecm7fD4JWyTj1gbrYxnYk_U6-hxTKZzzPkzutdB5fHSM58n1h_dXy4_pxdfVevn2IgWWsZA2mgNjVBUsa7QoNUAj8oIzVQulqYjrhkPDKuBZK9o6z2nRtFAVta4ZF2VdnCfPD76jsz8n9EH2xivsOhjQTl5mVUXzKucRfHkAVXyid9jK0Zke3F5mVM6zlP_MMtJPj7ZT06M-scfhRf3ZUQevoGsdDMr4E1bU8Sfwubr0gMW24-1JBvdDVrzgpby63MjV508ryjZf5LfIPznwLVgJ3120vN4IxsqsnF_w4iCC8vLGTm6Ijf1v9X8A_TvMzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16602627</pqid></control><display><type>article</type><title>Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center</title><source>MEDLINE</source><source>ACS Publications</source><creator>Tang, Xiao Song ; Chisholm, Dexter A ; Dismukes, G. Charles ; Brudvig, Gary W ; Diner, Bruce A</creator><creatorcontrib>Tang, Xiao Song ; Chisholm, Dexter A ; Dismukes, G. Charles ; Brudvig, Gary W ; Diner, Bruce A</creatorcontrib><description>The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to tho oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of each of the two homologous polypeptides, D1 and D2, that comprise the reaction center. Tyrosine D of polypeptide D2 has been proposed, upon oxidation, to give up its phenolic proton to a nearby basic amino acid residue, forming a neutral radical. Modeling studies have pointed to His190 (spinach numbering) as a likely candidate for this basic residue. As a test of this hypothesis, we have constructed three site-directed mutations in the D2 polypeptide of the cyanobacterium Synechocystis sp. PCC6803. His189 (the Synechocystis homologue of His190 of spinach) has been replaced by glutamine, aspartate, or leucine. Instead of the normal D.EPR signal (g = 2.0046; line width 16-19 G), PSII core complexes isolated from these three mutants show an altered dark-stable EPR signal with a narrowed line width (11-13 G), and g values of 2.0046, 2.0043, and 2.0042 for the His189Gln, His189Asp, and His189Leu mutants, respectively. Despite the reduced line width, these EPR signals show g values and microwave-power saturation properties similar to the normal D. signal. Furthermore, specific deuteration in one of those mutants at the 3 and 5 positions of the phenol ring of the photosystem II reaction center tyrosines results in a loss of hyperfine structure of the EPR signal, proving that the signal indeed arises from tyrosine. Proton-endor studies of these tyrosine radicals show that one hyperfine coupling component of 3.5-3.6 MHz, observed in the wild-type strain disappears in all three mutants. Upon incubation of wild-type photosystem II core complexes in D2O, this hyperfine coupling is lost, indicating that it originates from an exchangeable proton, mos</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00212a045</identifier><identifier>PMID: 8257709</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Cell structures and functions ; Chloroplast, photosynthetic membrane and photosynthesis ; Cyanobacteria - chemistry ; Cyanobacteria - genetics ; CYANOPHYTA ; Deuterium ; Electron Spin Resonance Spectroscopy ; FOTOSISTEMAS ; Freshwater ; Fundamental and applied biological sciences. Psychology ; HISTIDINA ; HISTIDINE ; Histidine - chemistry ; Hydrogen Bonding ; Molecular and cellular biology ; MUTACION INDUCIDA ; Mutagenesis, Site-Directed ; MUTATION PROVOQUEE ; Oxidation-Reduction ; Oxygen - metabolism ; Photosynthetic Reaction Center Complex Proteins - chemistry ; Photosynthetic Reaction Center Complex Proteins - genetics ; Photosystem II Protein Complex ; PHOTOSYSTEME ; Plasmids ; Restriction Mapping ; Synechocystis ; TIROSINA ; Transformation, Bacterial ; TYROSINE ; Tyrosine - chemistry</subject><ispartof>Biochemistry (Easton), 1993-12, Vol.32 (49), p.13742-13748</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-bd7a440c341bd95daab92374c89cd09923b7ab46a71f9f82203bfa638d8479583</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00212a045$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00212a045$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3852078$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8257709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Xiao Song</creatorcontrib><creatorcontrib>Chisholm, Dexter A</creatorcontrib><creatorcontrib>Dismukes, G. Charles</creatorcontrib><creatorcontrib>Brudvig, Gary W</creatorcontrib><creatorcontrib>Diner, Bruce A</creatorcontrib><title>Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to tho oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of each of the two homologous polypeptides, D1 and D2, that comprise the reaction center. Tyrosine D of polypeptide D2 has been proposed, upon oxidation, to give up its phenolic proton to a nearby basic amino acid residue, forming a neutral radical. Modeling studies have pointed to His190 (spinach numbering) as a likely candidate for this basic residue. As a test of this hypothesis, we have constructed three site-directed mutations in the D2 polypeptide of the cyanobacterium Synechocystis sp. PCC6803. His189 (the Synechocystis homologue of His190 of spinach) has been replaced by glutamine, aspartate, or leucine. Instead of the normal D.EPR signal (g = 2.0046; line width 16-19 G), PSII core complexes isolated from these three mutants show an altered dark-stable EPR signal with a narrowed line width (11-13 G), and g values of 2.0046, 2.0043, and 2.0042 for the His189Gln, His189Asp, and His189Leu mutants, respectively. Despite the reduced line width, these EPR signals show g values and microwave-power saturation properties similar to the normal D. signal. Furthermore, specific deuteration in one of those mutants at the 3 and 5 positions of the phenol ring of the photosystem II reaction center tyrosines results in a loss of hyperfine structure of the EPR signal, proving that the signal indeed arises from tyrosine. Proton-endor studies of these tyrosine radicals show that one hyperfine coupling component of 3.5-3.6 MHz, observed in the wild-type strain disappears in all three mutants. Upon incubation of wild-type photosystem II core complexes in D2O, this hyperfine coupling is lost, indicating that it originates from an exchangeable proton, mos</description><subject>Biological and medical sciences</subject><subject>Cell structures and functions</subject><subject>Chloroplast, photosynthetic membrane and photosynthesis</subject><subject>Cyanobacteria - chemistry</subject><subject>Cyanobacteria - genetics</subject><subject>CYANOPHYTA</subject><subject>Deuterium</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>FOTOSISTEMAS</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HISTIDINA</subject><subject>HISTIDINE</subject><subject>Histidine - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Molecular and cellular biology</subject><subject>MUTACION INDUCIDA</subject><subject>Mutagenesis, Site-Directed</subject><subject>MUTATION PROVOQUEE</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - metabolism</subject><subject>Photosynthetic Reaction Center Complex Proteins - chemistry</subject><subject>Photosynthetic Reaction Center Complex Proteins - genetics</subject><subject>Photosystem II Protein Complex</subject><subject>PHOTOSYSTEME</subject><subject>Plasmids</subject><subject>Restriction Mapping</subject><subject>Synechocystis</subject><subject>TIROSINA</subject><subject>Transformation, Bacterial</subject><subject>TYROSINE</subject><subject>Tyrosine - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptksGO0zAQhiMEWsrCiRsSkg8IDhBwEieOj6hAqVhgpe5K3KyJPaFekjjYTtm-Kw-DQ6uKA6ex_X_-ZzzjJHmc0dcZzbM3jaEx5EBZeSdZZGVOUyZEeTdZUEqrNBcVvZ888P4mbhnl7Cw5q_OScyoWye_NiCo465UdjSK4MxoHhaR1tifeBEy1cZFATfopwBA8sS3Z7AdUW6v2PhhPLpfLqqYFMQNpYWfdTABRnfUYzwI6UMHYgTQYfiEOZGviNW0GJFktCAyaONT2Np2xHZKwj-X8VSv6ijQ2bGfD0Xb7Ecd4Ecm7fD4JWyTj1gbrYxnYk_U6-hxTKZzzPkzutdB5fHSM58n1h_dXy4_pxdfVevn2IgWWsZA2mgNjVBUsa7QoNUAj8oIzVQulqYjrhkPDKuBZK9o6z2nRtFAVta4ZF2VdnCfPD76jsz8n9EH2xivsOhjQTl5mVUXzKucRfHkAVXyid9jK0Zke3F5mVM6zlP_MMtJPj7ZT06M-scfhRf3ZUQevoGsdDMr4E1bU8Sfwubr0gMW24-1JBvdDVrzgpby63MjV508ryjZf5LfIPznwLVgJ3120vN4IxsqsnF_w4iCC8vLGTm6Ijf1v9X8A_TvMzg</recordid><startdate>19931214</startdate><enddate>19931214</enddate><creator>Tang, Xiao Song</creator><creator>Chisholm, Dexter A</creator><creator>Dismukes, G. Charles</creator><creator>Brudvig, Gary W</creator><creator>Diner, Bruce A</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>19931214</creationdate><title>Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center</title><author>Tang, Xiao Song ; Chisholm, Dexter A ; Dismukes, G. Charles ; Brudvig, Gary W ; Diner, Bruce A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-bd7a440c341bd95daab92374c89cd09923b7ab46a71f9f82203bfa638d8479583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Biological and medical sciences</topic><topic>Cell structures and functions</topic><topic>Chloroplast, photosynthetic membrane and photosynthesis</topic><topic>Cyanobacteria - chemistry</topic><topic>Cyanobacteria - genetics</topic><topic>CYANOPHYTA</topic><topic>Deuterium</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>FOTOSISTEMAS</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HISTIDINA</topic><topic>HISTIDINE</topic><topic>Histidine - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Molecular and cellular biology</topic><topic>MUTACION INDUCIDA</topic><topic>Mutagenesis, Site-Directed</topic><topic>MUTATION PROVOQUEE</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - metabolism</topic><topic>Photosynthetic Reaction Center Complex Proteins - chemistry</topic><topic>Photosynthetic Reaction Center Complex Proteins - genetics</topic><topic>Photosystem II Protein Complex</topic><topic>PHOTOSYSTEME</topic><topic>Plasmids</topic><topic>Restriction Mapping</topic><topic>Synechocystis</topic><topic>TIROSINA</topic><topic>Transformation, Bacterial</topic><topic>TYROSINE</topic><topic>Tyrosine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xiao Song</creatorcontrib><creatorcontrib>Chisholm, Dexter A</creatorcontrib><creatorcontrib>Dismukes, G. Charles</creatorcontrib><creatorcontrib>Brudvig, Gary W</creatorcontrib><creatorcontrib>Diner, Bruce A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xiao Song</au><au>Chisholm, Dexter A</au><au>Dismukes, G. Charles</au><au>Brudvig, Gary W</au><au>Diner, Bruce A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1993-12-14</date><risdate>1993</risdate><volume>32</volume><issue>49</issue><spage>13742</spage><epage>13748</epage><pages>13742-13748</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to tho oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of each of the two homologous polypeptides, D1 and D2, that comprise the reaction center. Tyrosine D of polypeptide D2 has been proposed, upon oxidation, to give up its phenolic proton to a nearby basic amino acid residue, forming a neutral radical. Modeling studies have pointed to His190 (spinach numbering) as a likely candidate for this basic residue. As a test of this hypothesis, we have constructed three site-directed mutations in the D2 polypeptide of the cyanobacterium Synechocystis sp. PCC6803. His189 (the Synechocystis homologue of His190 of spinach) has been replaced by glutamine, aspartate, or leucine. Instead of the normal D.EPR signal (g = 2.0046; line width 16-19 G), PSII core complexes isolated from these three mutants show an altered dark-stable EPR signal with a narrowed line width (11-13 G), and g values of 2.0046, 2.0043, and 2.0042 for the His189Gln, His189Asp, and His189Leu mutants, respectively. Despite the reduced line width, these EPR signals show g values and microwave-power saturation properties similar to the normal D. signal. Furthermore, specific deuteration in one of those mutants at the 3 and 5 positions of the phenol ring of the photosystem II reaction center tyrosines results in a loss of hyperfine structure of the EPR signal, proving that the signal indeed arises from tyrosine. Proton-endor studies of these tyrosine radicals show that one hyperfine coupling component of 3.5-3.6 MHz, observed in the wild-type strain disappears in all three mutants. Upon incubation of wild-type photosystem II core complexes in D2O, this hyperfine coupling is lost, indicating that it originates from an exchangeable proton, mos</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>8257709</pmid><doi>10.1021/bi00212a045</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1993-12, Vol.32 (49), p.13742-13748
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_16602627
source MEDLINE; ACS Publications
subjects Biological and medical sciences
Cell structures and functions
Chloroplast, photosynthetic membrane and photosynthesis
Cyanobacteria - chemistry
Cyanobacteria - genetics
CYANOPHYTA
Deuterium
Electron Spin Resonance Spectroscopy
FOTOSISTEMAS
Freshwater
Fundamental and applied biological sciences. Psychology
HISTIDINA
HISTIDINE
Histidine - chemistry
Hydrogen Bonding
Molecular and cellular biology
MUTACION INDUCIDA
Mutagenesis, Site-Directed
MUTATION PROVOQUEE
Oxidation-Reduction
Oxygen - metabolism
Photosynthetic Reaction Center Complex Proteins - chemistry
Photosynthetic Reaction Center Complex Proteins - genetics
Photosystem II Protein Complex
PHOTOSYSTEME
Plasmids
Restriction Mapping
Synechocystis
TIROSINA
Transformation, Bacterial
TYROSINE
Tyrosine - chemistry
title Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20evidence%20from%20site-directed%20mutants%20of%20Synechocystis%20PCC6803%20in%20favor%20of%20a%20close%20interaction%20between%20histidine%20189%20and%20redox-active%20tyrosine%20160,%20both%20of%20polypeptide%20D2%20of%20the%20photosystem%20II%20reaction%20center&rft.jtitle=Biochemistry%20(Easton)&rft.au=Tang,%20Xiao%20Song&rft.date=1993-12-14&rft.volume=32&rft.issue=49&rft.spage=13742&rft.epage=13748&rft.pages=13742-13748&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00212a045&rft_dat=%3Cproquest_cross%3E16602627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16602627&rft_id=info:pmid/8257709&rfr_iscdi=true