Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center

The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to tho oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1993-12, Vol.32 (49), p.13742-13748
Hauptverfasser: Tang, Xiao Song, Chisholm, Dexter A, Dismukes, G. Charles, Brudvig, Gary W, Diner, Bruce A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to tho oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of each of the two homologous polypeptides, D1 and D2, that comprise the reaction center. Tyrosine D of polypeptide D2 has been proposed, upon oxidation, to give up its phenolic proton to a nearby basic amino acid residue, forming a neutral radical. Modeling studies have pointed to His190 (spinach numbering) as a likely candidate for this basic residue. As a test of this hypothesis, we have constructed three site-directed mutations in the D2 polypeptide of the cyanobacterium Synechocystis sp. PCC6803. His189 (the Synechocystis homologue of His190 of spinach) has been replaced by glutamine, aspartate, or leucine. Instead of the normal D.EPR signal (g = 2.0046; line width 16-19 G), PSII core complexes isolated from these three mutants show an altered dark-stable EPR signal with a narrowed line width (11-13 G), and g values of 2.0046, 2.0043, and 2.0042 for the His189Gln, His189Asp, and His189Leu mutants, respectively. Despite the reduced line width, these EPR signals show g values and microwave-power saturation properties similar to the normal D. signal. Furthermore, specific deuteration in one of those mutants at the 3 and 5 positions of the phenol ring of the photosystem II reaction center tyrosines results in a loss of hyperfine structure of the EPR signal, proving that the signal indeed arises from tyrosine. Proton-endor studies of these tyrosine radicals show that one hyperfine coupling component of 3.5-3.6 MHz, observed in the wild-type strain disappears in all three mutants. Upon incubation of wild-type photosystem II core complexes in D2O, this hyperfine coupling is lost, indicating that it originates from an exchangeable proton, mos
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00212a045