Refined quicksort asymptotics
The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non‐degenerate random limit Y...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2015-03, Vol.46 (2), p.346-361 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non‐degenerate random limit Y. This assumes a natural embedding of all Yn on one probability space, e.g., via random binary search trees. In this note a central limit theorem for the error term in the latter almost sure convergence is shown:
n2logn(Yn−Y)→dN (n→∞),
where N denotes a standard normal random variable. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 346–361, 2015 |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20497 |