Refined quicksort asymptotics

The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non‐degenerate random limit Y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2015-03, Vol.46 (2), p.346-361
1. Verfasser: Neininger, Ralph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non‐degenerate random limit Y. This assumes a natural embedding of all Yn on one probability space, e.g., via random binary search trees. In this note a central limit theorem for the error term in the latter almost sure convergence is shown: n2logn(Yn−Y)→dN  (n→∞), where N denotes a standard normal random variable. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 346–361, 2015
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20497