Formula Method for Bound State Problems
We present a simple formula for finding bound state solution of any quantum wave equation which can be simplified to the form of Ψ ′ ′ ( s ) + ( k 1 - k 2 s ) s ( 1 - k 3 s ) Ψ ′ ( s ) + ( A s 2 + B s + C ) s 2 ( 1 - k 3 s ) 2 Ψ ( s ) = 0 . The two cases where k 3 = 0 and k 3 ≠ 0 are studied. We de...
Gespeichert in:
Veröffentlicht in: | Few-body systems 2015-01, Vol.56 (1), p.63-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a simple formula for finding bound state solution of any quantum wave equation which can be simplified to the form of
Ψ
′
′
(
s
)
+
(
k
1
-
k
2
s
)
s
(
1
-
k
3
s
)
Ψ
′
(
s
)
+
(
A
s
2
+
B
s
+
C
)
s
2
(
1
-
k
3
s
)
2
Ψ
(
s
)
=
0
. The two cases where
k
3
= 0 and
k
3
≠
0
are studied. We derive an expression for the energy spectrum and the wave function in terms of generalized hypergeometric functions
2
F
1
(
α
,
β
;
γ
;
k
3
s
)
. In order to show the accuracy of this proposed formula, we resort to obtaining bound state solutions for some existing eigenvalue problems in a rather more simplified way. This method has shown to be accurate, efficient, reliable and very easy to use particularly when applied to vast number of quantum potential models. |
---|---|
ISSN: | 0177-7963 1432-5411 |
DOI: | 10.1007/s00601-014-0937-9 |