Tracing low-temperature aqueous metal migration in mineralized watersheds with Cu isotope fractionation

•Cu isotope fractionation of ores and waters identifies copper sulfide weathering.•Redox reactions cause isotopic shift measured in areas of sulfide weathering.•Consistent isotope signature in different deposit, climate, or concentration. Copper isotope signatures in waters emanating from mineralize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geochemistry 2014-12, Vol.51, p.109-115
Hauptverfasser: Mathur, R., Munk, L.A., Townley, B., Gou, K.Y., Gómez Miguélez, N., Titley, S., Chen, G.G., Song, S., Reich, M., Tornos, F., Ruiz, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Cu isotope fractionation of ores and waters identifies copper sulfide weathering.•Redox reactions cause isotopic shift measured in areas of sulfide weathering.•Consistent isotope signature in different deposit, climate, or concentration. Copper isotope signatures in waters emanating from mineralized watersheds provide evidence for the source aqueous copper in solution. Low-temperature aqueous oxidation of Cu sulfide minerals produces significant copper isotopic fractionation between solutions and residues. Abiotic experimental data of fractionation (defined as Δliquid–solid ‰=δ65Culiquid−δ65Cusolid) are on the order of 1–3‰ and are unique for copper rich-sulfide minerals. Data presented here from ores and waters within defined boundaries of porphyry copper, massive sulfide, skarn, and epithermal ore deposits mimic abiotic experiments. Thus, the oxidation of sulfide minerals appears to cause the signatures in the waters although significant biological, temperature, and pH variations exist in the fluids. Regardless of the deposit type, water type, concentration of Cu in solution, or location, the data provide a means to trace sources of metals in solutions. This relationship allows for tracking sources and degree of metal migration in low temperature aqueous systems and has direct application to exploration geology and environmental geochemistry.
ISSN:0883-2927
1872-9134
DOI:10.1016/j.apgeochem.2014.09.019