Crashworthiness uncertainty analysis of typical civil aircraft based on Box-Behnken method

The crashworthiness is an important design factor of civil aircraft related with the safety of occupant during impact accident. It is a highly nonlinear transient dynamic problem and may be greatly influenced by the uncertainty factors. Crashworthiness uncertainty analysis is conducted to investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2014-06, Vol.27 (3), p.550-557
Hauptverfasser: Ren, Yiru, Xiang, Jinwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The crashworthiness is an important design factor of civil aircraft related with the safety of occupant during impact accident. It is a highly nonlinear transient dynamic problem and may be greatly influenced by the uncertainty factors. Crashworthiness uncertainty analysis is conducted to investigate the effects of initial conditions, structural dimensions and material properties. Simplified finite element model is built based on the geometrical model and basic physics phenomenon. Box-Behnken sampling and response surface methods are adopted to obtain gradient information. Results show that the proposed methods are effective for crashworthiness uncertainty analysis. Yield stress, frame thickness, impact velocity and angle have great influence on the failure behavior, and yield stress and frame thickness dominate the uncertainty of internal energy. Failure strain and tangent modulus have the smallest influence on the initial peak acceleration, and gradients of mean acceleration increase because the appearance of material plastic deformation and element failure.
ISSN:1000-9361
DOI:10.1016/j.cja.2014.04.020