A model of oceanic development by ridge jumping: Opening of the Scotia Sea

Ona Basin is a small intra-oceanic basin located in the southwestern corner of the Scotia Sea. This region is crucial for an understanding of the early phases of opening of Drake Passage, since it may contain the oldest oceanic crust of the entire western Scotia Sea, where conflicting age difference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global and planetary change 2014-12, Vol.123, p.152-173
Hauptverfasser: Maldonado, Andrés, Bohoyo, Fernando, Galindo-Zaldívar, Jesús, Hernández-Molina, Fº. Javier, Lobo, Francisco J., Lodolo, Emanuele, Martos, Yasmina M., Pérez, Lara F., Schreider, Anatoly A., Somoza, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ona Basin is a small intra-oceanic basin located in the southwestern corner of the Scotia Sea. This region is crucial for an understanding of the early phases of opening of Drake Passage, since it may contain the oldest oceanic crust of the entire western Scotia Sea, where conflicting age differences from Eocene to Oligocene have been proposed to date. The precise timing of the gateway opening between the Pacific and Atlantic oceans, moreover, has significant paleoceanographic and global implications. Two sub-basins are identified in this region, the eastern and western Ona basins, separated by the submarine relief of the Ona High. A dense geophysical data set collected during the last two decades is analyzed here. The data include multichannel seismic reflection profiles, and magnetic and gravimetric data. The oceanic basement is highly deformed by normal, reverse and transcurrent faults, as well as affected by deep intrusions from the mantle. The initial extension and continental thinning, with subsequent oceanic spreading, were followed by compression and thrusting. Several elongated troughs, bounded by faults, depict a thick sequence of depositional units in the basin. Eight seismic units are identified in a deep trough of the eastern Ona Basin. The deposits reach a thickness of 5km, a consistent value not previously reported from the Scotia Sea. A body of chaotic seismic facies is also observed above the thinned continental crust of the Ona High. Magnetic seafloor anomalies older than C10 (~28.5Ma) may be present in the region. The anomalies could include up to chron C12r (~32Ma), although their identification is difficult, since the amplitude is subdued and the original oceanic crust was highly deformed by later faulting and thrusting. The magnetic anomaly distribution is not congruent with seafloor spreading from a single ridge. The basin plain is tilted and subducted southwestward below the South Shetland Islands Block, particularly in the western part, where an accretionary prism is identified. Such tectonics, locally affecting up to the most recent deposits, imply that a portion of the primitive oceanic crust is absent. Based on the stratigraphy of the deposits and the magnetic anomalies, an age of 44Ma is postulated for the initiation of oceanic spreading in the eastern Ona basin, while spreading in the western Ona Basin would have occurred during the early Oligocene. The tectonics, depositional units and the age of the oceanic crust provide add
ISSN:0921-8181
1872-6364
DOI:10.1016/j.gloplacha.2014.06.010