Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 2: Personal care product ingredients
An intensive study was conducted to provide data on intra- and inter-individual variation in urinary excretion of a series of ingredients in personal care products (parabens, triclosan, benzophenones) and bisphenol A (BPA, not expected to be an ingredient) in 8 volunteers over 6 days. Exposure diari...
Gespeichert in:
Veröffentlicht in: | Toxicology letters 2014-12, Vol.231 (2), p.261-269 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An intensive study was conducted to provide data on intra- and inter-individual variation in urinary excretion of a series of ingredients in personal care products (parabens, triclosan, benzophenones) and bisphenol A (BPA, not expected to be an ingredient) in 8 volunteers over 6 days. Exposure diaries recorded use of personal care products with identified target analytes as ingredients. Participants' usual products were replaced with products without the target analytes for 2 of the 6 days. Urine void volumes and times were recorded. Methyl, ethyl, and n-propylparabens, triclosan, benzophenone-3, and BPA were frequently detected (≥70% of samples). Urinary concentrations of the parabens and triclosan were lower on product replacement days. First morning void concentrations correlated moderately to highly with 24-h composite concentrations for all analytes. Intraclass correlation coefficients (ICCs) for spot samples collected on days with usual product use were low for BPA (0.15), moderate for n-propylparaben and methylparaben (0.39 and 0.56, respectively), and high for ethylparaben, benzophenone-3, and triclosan (0.76, 0.81, and 0.934, respectively); ICCs were consistently higher on the basis of cr-adjusted concentrations. Hydration status adjustment methods were assessed by comparing unadjusted and adjusted concentrations to urinary excretion rates (ER, ng/kg-h) for all analytes and samples. Specific gravity-adjusted concentrations correlated slightly better with ER than creatinine-adjusted concentrations. Within-individual variation in biomarker concentrations was highest for methyl and ethylparabens (2 orders of magnitude variation in spot sample concentrations) and lower for the other analytes (1–1.5 orders of magnitude). This dataset provides insight into the design and interpretation of urinary biomonitoring studies for non-persistent chemicals. |
---|---|
ISSN: | 0378-4274 1879-3169 |
DOI: | 10.1016/j.toxlet.2014.06.023 |