Multivariate Jackson-type inequality for a new type neural network approximation
In this paper, we introduce a new type neural networks by superpositions of a sigmoidal function and study its approximation capability. We investigate the multivariate quantitative constructive approximation of real continuous multivariate functions on a cube by such type neural networks. This appr...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2014-12, Vol.38 (24), p.6031-6037 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a new type neural networks by superpositions of a sigmoidal function and study its approximation capability. We investigate the multivariate quantitative constructive approximation of real continuous multivariate functions on a cube by such type neural networks. This approximation is derived by establishing multivariate Jackson-type inequalities involving the multivariate modulus of smoothness of the target function. Our networks require no training in the traditional sense. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2014.05.018 |