Multivariate Jackson-type inequality for a new type neural network approximation

In this paper, we introduce a new type neural networks by superpositions of a sigmoidal function and study its approximation capability. We investigate the multivariate quantitative constructive approximation of real continuous multivariate functions on a cube by such type neural networks. This appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2014-12, Vol.38 (24), p.6031-6037
Hauptverfasser: Lin, Shaobo, Rong, Yuanhua, Xu, Zongben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a new type neural networks by superpositions of a sigmoidal function and study its approximation capability. We investigate the multivariate quantitative constructive approximation of real continuous multivariate functions on a cube by such type neural networks. This approximation is derived by establishing multivariate Jackson-type inequalities involving the multivariate modulus of smoothness of the target function. Our networks require no training in the traditional sense.
ISSN:0307-904X
DOI:10.1016/j.apm.2014.05.018