Optimal Impulsive Collision Avoidance in Low Earth Orbit
This paper presents a high-accuracy fully analytical formulation to compute the miss distance and collision probability of two approaching objects following an impulsive collision avoidance maneuver. The formulation hinges on a linear relation between the applied impulse and the objects' relati...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2015-02, Vol.38 (2), p.217-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a high-accuracy fully analytical formulation to compute the miss distance and collision probability of two approaching objects following an impulsive collision avoidance maneuver. The formulation hinges on a linear relation between the applied impulse and the objects' relative motion in the b-plane, which allows one to formulate the maneuver optimization problem as an eigenvalue problem coupled to a simple nonlinear algebraic equation. The optimization criterion consists of minimizing the maneuver cost in terms of delta-V magnitude to either maximize collision miss distance or to minimize Gaussian collision probability. The algorithm, whose accuracy is verified in representative mission scenarios, can be employed for collision avoidance maneuver planning with reduced computational cost when compared with fully numerical algorithms. Presented at the 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, NM, 26-30 January 2014 |
---|---|
ISSN: | 0731-5090 1533-3884 |
DOI: | 10.2514/1.G000742 |