Device-to-device communication underlaying converged heterogeneous networks

To satisfy the ever increasing wireless service demand, it is effective to form a converged network by utilizing interworking mechanisms, such that the resources of heterogeneous wireless networks can be allocated in a coordinated and efficient manner. Despite the potential advantages of a converged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications 2014-12, Vol.21 (6), p.98-107
Hauptverfasser: Gamage, Amila Tharaperiya, Hao Liang, Ran Zhang, Xuemin Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To satisfy the ever increasing wireless service demand, it is effective to form a converged network by utilizing interworking mechanisms, such that the resources of heterogeneous wireless networks can be allocated in a coordinated and efficient manner. Despite the potential advantages of a converged network, its performance needs further improvement, especially at cell edges and rural areas where only one network is available. In this article, we investigate how to leverage device-to-device, D2D, communication to further improve the performance of a converged network which consists of an LTE-A cellular network and IEEE 802.11n WLANs. Three main technical challenges that complicate resource allocation are identified: allocation of resources capturing diverse radio access technologies of the networks, selection of users' communication modes for multiple networks to maximize hop and reuse gains, and interference management. To address these challenges, we propose a resource allocation scheme that performs mode selection, allocation of WLAN resources, and allocation of LTE-A network resources in three different timescales. The resource allocation scheme is semi-distributedly implemented in the underlying converged D2D communication network, and the achievable performance improvements are demonstrated via simulation results.
ISSN:1536-1284
1558-0687
DOI:10.1109/MWC.2014.7000977