Spiral Rainbands in a Numerical Simulation of Hurricane Bill (2009). Part I: Structures and Comparisons to Observations

This study examines spiral rainbands in a numerical simulation of Hurricane Bill (2009). This paper, the first part of the study, evaluates the structures of spiral rainbands and compares them to previous observations. Four types of spiral rainbands are identified: principal, secondary, distant, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2015-01, Vol.72 (1), p.164-190
Hauptverfasser: Moon, Yumin, Nolan, David S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examines spiral rainbands in a numerical simulation of Hurricane Bill (2009). This paper, the first part of the study, evaluates the structures of spiral rainbands and compares them to previous observations. Four types of spiral rainbands are identified: principal, secondary, distant, and inner rainbands. Principal rainbands tend to be stationary relative to the storm center, while secondary rainbands are more transient and move around the storm center. Both principal and secondary rainbands are tilted radially outward with height and have many of the commonly observed kinematic features, such as overturning secondary circulation and enhanced tangential velocity on their radially outward sides. Principal rainbands are bounded by very dry air on their radially outward sides. Distant rainbands are radially inward-tilting convective features that have dense cold pools near the surface. Inner rainbands are made of shallow convection that appears to have originated from near the eyewall. Differences in the structures of spiral rainbands between observations and the Hurricane Bill simulation are noted. The second part of the study investigates how inner rainbands propagate and makes comparison with previously proposed hypotheses such as vortex Rossby waves.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-14-0058.1