Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires
The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been c...
Gespeichert in:
Veröffentlicht in: | Composites. Part B, Engineering Engineering, 2015-03, Vol.70, p.92-98 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | Composites. Part B, Engineering |
container_volume | 70 |
creator | Nikulin, Sergey A. Rogachev, Stanislav O. Rozhnov, Andrey B. Pantsyrnyi, Viktor I. Khlebova, Natalya E. Nechaykina, Tatyana A. Khatkevich, Vladimir M. Zadorozhnyy, Mikhail Yu |
description | The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking. |
doi_str_mv | 10.1016/j.compositesb.2014.10.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660075683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836814005022</els_id><sourcerecordid>1660075683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</originalsourceid><addsrcrecordid>eNqNUEFOwzAQtBBIlMIfwo1Lgh07tnNEEQWkIi7A1XLtTeuqTYqdgLjxB37IS3AIqjhy2tXszGhnEDonOCOY8Mt1Ztrtrg2ug7DIckxYxDPM-AGaECnKlGBeHsadFmUqKZfH6CSENcaYFTSfIHPvjG9D53vT9R4S3dik1p1b9pBEFJplt0raOlm55SrdA1X_9fE5G9k_-3PimjQ-0SeNbtr9S8mb8xBO0VGtNwHOfucUPc2uH6vbdP5wc1ddzVNDC9alQuK61FZbIiytmeGw0NZawY0AQS3Pc2El1azkgmHMeSE0ZrLOmVhIXRNBp-hi9N359qWH0KmtCwY2G91A2wdFOMdYFFzSSC1H6hA-eKjVzrut9u-KYDUUq9bqT7FqKHY4xWKjthq1ELO8OvAqGAeNARvDmk7Z1v3D5RuClotS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660075683</pqid></control><display><type>article</type><title>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</title><source>Elsevier ScienceDirect Journals</source><creator>Nikulin, Sergey A. ; Rogachev, Stanislav O. ; Rozhnov, Andrey B. ; Pantsyrnyi, Viktor I. ; Khlebova, Natalya E. ; Nechaykina, Tatyana A. ; Khatkevich, Vladimir M. ; Zadorozhnyy, Mikhail Yu</creator><creatorcontrib>Nikulin, Sergey A. ; Rogachev, Stanislav O. ; Rozhnov, Andrey B. ; Pantsyrnyi, Viktor I. ; Khlebova, Natalya E. ; Nechaykina, Tatyana A. ; Khatkevich, Vladimir M. ; Zadorozhnyy, Mikhail Yu</creatorcontrib><description>The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2014.10.046</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Metal–matrix composites (MMCs) ; B. Fatigue ; B. Microstructures ; COMPOSITES ; Copper ; COPPER (PURE) ; CRACK GROWTH ; Crack propagation ; D. Fractography ; FAILURE ; Fatigue failure ; FATIGUE PROPERTIES ; Microstructure ; MICROSTRUCTURES ; Nanostructure ; Particulate composites ; Quantitative analysis ; WIRE</subject><ispartof>Composites. Part B, Engineering, 2015-03, Vol.70, p.92-98</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</citedby><cites>FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359836814005022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nikulin, Sergey A.</creatorcontrib><creatorcontrib>Rogachev, Stanislav O.</creatorcontrib><creatorcontrib>Rozhnov, Andrey B.</creatorcontrib><creatorcontrib>Pantsyrnyi, Viktor I.</creatorcontrib><creatorcontrib>Khlebova, Natalya E.</creatorcontrib><creatorcontrib>Nechaykina, Tatyana A.</creatorcontrib><creatorcontrib>Khatkevich, Vladimir M.</creatorcontrib><creatorcontrib>Zadorozhnyy, Mikhail Yu</creatorcontrib><title>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</title><title>Composites. Part B, Engineering</title><description>The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking.</description><subject>A. Metal–matrix composites (MMCs)</subject><subject>B. Fatigue</subject><subject>B. Microstructures</subject><subject>COMPOSITES</subject><subject>Copper</subject><subject>COPPER (PURE)</subject><subject>CRACK GROWTH</subject><subject>Crack propagation</subject><subject>D. Fractography</subject><subject>FAILURE</subject><subject>Fatigue failure</subject><subject>FATIGUE PROPERTIES</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Nanostructure</subject><subject>Particulate composites</subject><subject>Quantitative analysis</subject><subject>WIRE</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUEFOwzAQtBBIlMIfwo1Lgh07tnNEEQWkIi7A1XLtTeuqTYqdgLjxB37IS3AIqjhy2tXszGhnEDonOCOY8Mt1Ztrtrg2ug7DIckxYxDPM-AGaECnKlGBeHsadFmUqKZfH6CSENcaYFTSfIHPvjG9D53vT9R4S3dik1p1b9pBEFJplt0raOlm55SrdA1X_9fE5G9k_-3PimjQ-0SeNbtr9S8mb8xBO0VGtNwHOfucUPc2uH6vbdP5wc1ddzVNDC9alQuK61FZbIiytmeGw0NZawY0AQS3Pc2El1azkgmHMeSE0ZrLOmVhIXRNBp-hi9N359qWH0KmtCwY2G91A2wdFOMdYFFzSSC1H6hA-eKjVzrut9u-KYDUUq9bqT7FqKHY4xWKjthq1ELO8OvAqGAeNARvDmk7Z1v3D5RuClotS</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Nikulin, Sergey A.</creator><creator>Rogachev, Stanislav O.</creator><creator>Rozhnov, Andrey B.</creator><creator>Pantsyrnyi, Viktor I.</creator><creator>Khlebova, Natalya E.</creator><creator>Nechaykina, Tatyana A.</creator><creator>Khatkevich, Vladimir M.</creator><creator>Zadorozhnyy, Mikhail Yu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150301</creationdate><title>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</title><author>Nikulin, Sergey A. ; Rogachev, Stanislav O. ; Rozhnov, Andrey B. ; Pantsyrnyi, Viktor I. ; Khlebova, Natalya E. ; Nechaykina, Tatyana A. ; Khatkevich, Vladimir M. ; Zadorozhnyy, Mikhail Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A. Metal–matrix composites (MMCs)</topic><topic>B. Fatigue</topic><topic>B. Microstructures</topic><topic>COMPOSITES</topic><topic>Copper</topic><topic>COPPER (PURE)</topic><topic>CRACK GROWTH</topic><topic>Crack propagation</topic><topic>D. Fractography</topic><topic>FAILURE</topic><topic>Fatigue failure</topic><topic>FATIGUE PROPERTIES</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Nanostructure</topic><topic>Particulate composites</topic><topic>Quantitative analysis</topic><topic>WIRE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikulin, Sergey A.</creatorcontrib><creatorcontrib>Rogachev, Stanislav O.</creatorcontrib><creatorcontrib>Rozhnov, Andrey B.</creatorcontrib><creatorcontrib>Pantsyrnyi, Viktor I.</creatorcontrib><creatorcontrib>Khlebova, Natalya E.</creatorcontrib><creatorcontrib>Nechaykina, Tatyana A.</creatorcontrib><creatorcontrib>Khatkevich, Vladimir M.</creatorcontrib><creatorcontrib>Zadorozhnyy, Mikhail Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikulin, Sergey A.</au><au>Rogachev, Stanislav O.</au><au>Rozhnov, Andrey B.</au><au>Pantsyrnyi, Viktor I.</au><au>Khlebova, Natalya E.</au><au>Nechaykina, Tatyana A.</au><au>Khatkevich, Vladimir M.</au><au>Zadorozhnyy, Mikhail Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>70</volume><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2014.10.046</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-8368 |
ispartof | Composites. Part B, Engineering, 2015-03, Vol.70, p.92-98 |
issn | 1359-8368 1879-1069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660075683 |
source | Elsevier ScienceDirect Journals |
subjects | A. Metal–matrix composites (MMCs) B. Fatigue B. Microstructures COMPOSITES Copper COPPER (PURE) CRACK GROWTH Crack propagation D. Fractography FAILURE Fatigue failure FATIGUE PROPERTIES Microstructure MICROSTRUCTURES Nanostructure Particulate composites Quantitative analysis WIRE |
title | Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20fatigue%20strength%20of%20high-strength%20Cu%E2%80%93Fe%20and%20Cu%E2%80%93V%20in-situ%20nanocomposite%20wires&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Nikulin,%20Sergey%20A.&rft.date=2015-03-01&rft.volume=70&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2014.10.046&rft_dat=%3Cproquest_cross%3E1660075683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660075683&rft_id=info:pmid/&rft_els_id=S1359836814005022&rfr_iscdi=true |