Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires

The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2015-03, Vol.70, p.92-98
Hauptverfasser: Nikulin, Sergey A., Rogachev, Stanislav O., Rozhnov, Andrey B., Pantsyrnyi, Viktor I., Khlebova, Natalya E., Nechaykina, Tatyana A., Khatkevich, Vladimir M., Zadorozhnyy, Mikhail Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue
container_start_page 92
container_title Composites. Part B, Engineering
container_volume 70
creator Nikulin, Sergey A.
Rogachev, Stanislav O.
Rozhnov, Andrey B.
Pantsyrnyi, Viktor I.
Khlebova, Natalya E.
Nechaykina, Tatyana A.
Khatkevich, Vladimir M.
Zadorozhnyy, Mikhail Yu
description The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking.
doi_str_mv 10.1016/j.compositesb.2014.10.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660075683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836814005022</els_id><sourcerecordid>1660075683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</originalsourceid><addsrcrecordid>eNqNUEFOwzAQtBBIlMIfwo1Lgh07tnNEEQWkIi7A1XLtTeuqTYqdgLjxB37IS3AIqjhy2tXszGhnEDonOCOY8Mt1Ztrtrg2ug7DIckxYxDPM-AGaECnKlGBeHsadFmUqKZfH6CSENcaYFTSfIHPvjG9D53vT9R4S3dik1p1b9pBEFJplt0raOlm55SrdA1X_9fE5G9k_-3PimjQ-0SeNbtr9S8mb8xBO0VGtNwHOfucUPc2uH6vbdP5wc1ddzVNDC9alQuK61FZbIiytmeGw0NZawY0AQS3Pc2El1azkgmHMeSE0ZrLOmVhIXRNBp-hi9N359qWH0KmtCwY2G91A2wdFOMdYFFzSSC1H6hA-eKjVzrut9u-KYDUUq9bqT7FqKHY4xWKjthq1ELO8OvAqGAeNARvDmk7Z1v3D5RuClotS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660075683</pqid></control><display><type>article</type><title>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</title><source>Elsevier ScienceDirect Journals</source><creator>Nikulin, Sergey A. ; Rogachev, Stanislav O. ; Rozhnov, Andrey B. ; Pantsyrnyi, Viktor I. ; Khlebova, Natalya E. ; Nechaykina, Tatyana A. ; Khatkevich, Vladimir M. ; Zadorozhnyy, Mikhail Yu</creator><creatorcontrib>Nikulin, Sergey A. ; Rogachev, Stanislav O. ; Rozhnov, Andrey B. ; Pantsyrnyi, Viktor I. ; Khlebova, Natalya E. ; Nechaykina, Tatyana A. ; Khatkevich, Vladimir M. ; Zadorozhnyy, Mikhail Yu</creatorcontrib><description>The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2014.10.046</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Metal–matrix composites (MMCs) ; B. Fatigue ; B. Microstructures ; COMPOSITES ; Copper ; COPPER (PURE) ; CRACK GROWTH ; Crack propagation ; D. Fractography ; FAILURE ; Fatigue failure ; FATIGUE PROPERTIES ; Microstructure ; MICROSTRUCTURES ; Nanostructure ; Particulate composites ; Quantitative analysis ; WIRE</subject><ispartof>Composites. Part B, Engineering, 2015-03, Vol.70, p.92-98</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</citedby><cites>FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359836814005022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nikulin, Sergey A.</creatorcontrib><creatorcontrib>Rogachev, Stanislav O.</creatorcontrib><creatorcontrib>Rozhnov, Andrey B.</creatorcontrib><creatorcontrib>Pantsyrnyi, Viktor I.</creatorcontrib><creatorcontrib>Khlebova, Natalya E.</creatorcontrib><creatorcontrib>Nechaykina, Tatyana A.</creatorcontrib><creatorcontrib>Khatkevich, Vladimir M.</creatorcontrib><creatorcontrib>Zadorozhnyy, Mikhail Yu</creatorcontrib><title>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</title><title>Composites. Part B, Engineering</title><description>The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking.</description><subject>A. Metal–matrix composites (MMCs)</subject><subject>B. Fatigue</subject><subject>B. Microstructures</subject><subject>COMPOSITES</subject><subject>Copper</subject><subject>COPPER (PURE)</subject><subject>CRACK GROWTH</subject><subject>Crack propagation</subject><subject>D. Fractography</subject><subject>FAILURE</subject><subject>Fatigue failure</subject><subject>FATIGUE PROPERTIES</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Nanostructure</subject><subject>Particulate composites</subject><subject>Quantitative analysis</subject><subject>WIRE</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUEFOwzAQtBBIlMIfwo1Lgh07tnNEEQWkIi7A1XLtTeuqTYqdgLjxB37IS3AIqjhy2tXszGhnEDonOCOY8Mt1Ztrtrg2ug7DIckxYxDPM-AGaECnKlGBeHsadFmUqKZfH6CSENcaYFTSfIHPvjG9D53vT9R4S3dik1p1b9pBEFJplt0raOlm55SrdA1X_9fE5G9k_-3PimjQ-0SeNbtr9S8mb8xBO0VGtNwHOfucUPc2uH6vbdP5wc1ddzVNDC9alQuK61FZbIiytmeGw0NZawY0AQS3Pc2El1azkgmHMeSE0ZrLOmVhIXRNBp-hi9N359qWH0KmtCwY2G91A2wdFOMdYFFzSSC1H6hA-eKjVzrut9u-KYDUUq9bqT7FqKHY4xWKjthq1ELO8OvAqGAeNARvDmk7Z1v3D5RuClotS</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Nikulin, Sergey A.</creator><creator>Rogachev, Stanislav O.</creator><creator>Rozhnov, Andrey B.</creator><creator>Pantsyrnyi, Viktor I.</creator><creator>Khlebova, Natalya E.</creator><creator>Nechaykina, Tatyana A.</creator><creator>Khatkevich, Vladimir M.</creator><creator>Zadorozhnyy, Mikhail Yu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150301</creationdate><title>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</title><author>Nikulin, Sergey A. ; Rogachev, Stanislav O. ; Rozhnov, Andrey B. ; Pantsyrnyi, Viktor I. ; Khlebova, Natalya E. ; Nechaykina, Tatyana A. ; Khatkevich, Vladimir M. ; Zadorozhnyy, Mikhail Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-780f9adad17d3f4c6ebaddd76c7e73d6227d83a49674006657a048f247b8af173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A. Metal–matrix composites (MMCs)</topic><topic>B. Fatigue</topic><topic>B. Microstructures</topic><topic>COMPOSITES</topic><topic>Copper</topic><topic>COPPER (PURE)</topic><topic>CRACK GROWTH</topic><topic>Crack propagation</topic><topic>D. Fractography</topic><topic>FAILURE</topic><topic>Fatigue failure</topic><topic>FATIGUE PROPERTIES</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Nanostructure</topic><topic>Particulate composites</topic><topic>Quantitative analysis</topic><topic>WIRE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikulin, Sergey A.</creatorcontrib><creatorcontrib>Rogachev, Stanislav O.</creatorcontrib><creatorcontrib>Rozhnov, Andrey B.</creatorcontrib><creatorcontrib>Pantsyrnyi, Viktor I.</creatorcontrib><creatorcontrib>Khlebova, Natalya E.</creatorcontrib><creatorcontrib>Nechaykina, Tatyana A.</creatorcontrib><creatorcontrib>Khatkevich, Vladimir M.</creatorcontrib><creatorcontrib>Zadorozhnyy, Mikhail Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikulin, Sergey A.</au><au>Rogachev, Stanislav O.</au><au>Rozhnov, Andrey B.</au><au>Pantsyrnyi, Viktor I.</au><au>Khlebova, Natalya E.</au><au>Nechaykina, Tatyana A.</au><au>Khatkevich, Vladimir M.</au><au>Zadorozhnyy, Mikhail Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>70</volume><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>The results of the quantitative analysis of the microstructure of the Cu–Fe and Cu–V in-situ nanocomposite wires with diameter of 0.44–0.80mm by transmission electron microscopy are presented. Comparative fatigue tests of Cu–Fe and Cu–V in-situ nanocomposite wires and pure copper samples have been carried out using a dynamic mechanical analyzer (DMA). The in-situ nanocomposites have significantly higher characteristics of low-cycle fatigue failure resistance as compared to that of pure copper. The fatigue crack propagation areas for the nanocomposite conductors and pure copper are characterized by fatigue striations and secondary cracking.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2014.10.046</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2015-03, Vol.70, p.92-98
issn 1359-8368
1879-1069
language eng
recordid cdi_proquest_miscellaneous_1660075683
source Elsevier ScienceDirect Journals
subjects A. Metal–matrix composites (MMCs)
B. Fatigue
B. Microstructures
COMPOSITES
Copper
COPPER (PURE)
CRACK GROWTH
Crack propagation
D. Fractography
FAILURE
Fatigue failure
FATIGUE PROPERTIES
Microstructure
MICROSTRUCTURES
Nanostructure
Particulate composites
Quantitative analysis
WIRE
title Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20fatigue%20strength%20of%20high-strength%20Cu%E2%80%93Fe%20and%20Cu%E2%80%93V%20in-situ%20nanocomposite%20wires&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Nikulin,%20Sergey%20A.&rft.date=2015-03-01&rft.volume=70&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2014.10.046&rft_dat=%3Cproquest_cross%3E1660075683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660075683&rft_id=info:pmid/&rft_els_id=S1359836814005022&rfr_iscdi=true