Composition variations in Cu2ZnSnSe4 thin films analyzed by X-ray diffraction, energy dispersive X-ray spectroscopy, particle induced X-ray emission, photoluminescence, and Raman spectroscopy

Compositional and structural studies of Cu2ZnSnSe4 (CZTSe) thin films were carried out by X-ray diffraction, energy dispersive X-ray spectroscopy (EDS), particle induced X-ray emission (PIXE), photoluminescence, and Raman spectroscopy. CZTSe thin films with different compositions were deposited on s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2014-07, Vol.562, p.109-113
Hauptverfasser: Nam, Dahyun, Opanasyuk, A.S., Koval, P.V., Ponomarev, A.G., Jeong, Ah Reum, Kim, Gee Yeong, Jo, William, Cheong, Hyeonsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compositional and structural studies of Cu2ZnSnSe4 (CZTSe) thin films were carried out by X-ray diffraction, energy dispersive X-ray spectroscopy (EDS), particle induced X-ray emission (PIXE), photoluminescence, and Raman spectroscopy. CZTSe thin films with different compositions were deposited on sodalime glass by co-evaporation. The composition of the films measured by two different methods, EDS and PIXE, showed significant differences. Generally, the Zn/Sn ratio measured by EDS is larger than that measured by PIXE. Both the micro-PIXE and the micro-Raman imaging results indicated the compositional and structural inhomogeneity of the sample. •Particle induced X-ray emission was used to analyze the composition of CZTSe films.•Energy dispersive X-ray spectroscopy tends to underestimate the Sn composition.•Local Raman intensity is related with the composition rather than the crystallinity.
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2014.03.079