Large-Area, Multilayered, and High-Resolution Visual Monitoring Using a Dual-Camera System
Large-area, high-resolution visual monitoring systems are indispensable in surveillance applications. To construct such systems, high-quality image capture and display devices are required. Whereas high-quality displays have rapidly developed, as exemplified by the announcement of the 85-inch 4K ult...
Gespeichert in:
Veröffentlicht in: | ACM transactions on multimedia computing communications and applications 2014-12, Vol.11 (2), p.1-23 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large-area, high-resolution visual monitoring systems are indispensable in surveillance applications. To construct such systems, high-quality image capture and display devices are required. Whereas high-quality displays have rapidly developed, as exemplified by the announcement of the 85-inch 4K ultrahigh-definition TV by Samsung at the 2013 Consumer Electronics Show (CES), high-resolution surveillance cameras have progressed slowly and remain not widely used compared with displays. In this study, we designed an innovative framework, using a dual-camera system comprising a wide-angle fixed camera and a high-resolution pan-tilt-zoom (PTZ) camera to construct a large-area, multilayered, and high-resolution visual monitoring system that features multiresolution monitoring of moving objects. First, we developed a novel calibration approach to estimate the relationship between the two cameras and calibrate the PTZ camera. The PTZ camera was calibrated based on the consistent property of distinct pan-tilt angle at various zooming factors, accelerating the calibration process without affecting accuracy; this calibration process has not been reported previously. After calibrating the dual-camera system, we used the PTZ camera and synthesized a large-area and high-resolution background image. When foreground targets were detected in the images captured by the wide-angle camera, the PTZ camera was controlled to continuously track the user-selected target. Last, we integrated preconstructed high-resolution background and low-resolution foreground images captured using the wide-angle camera and the high-resolution foreground image captured using the PTZ camera to generate a large-area, multilayered, and high-resolution view of the scene. |
---|---|
ISSN: | 1551-6857 1551-6865 |
DOI: | 10.1145/2645862 |