Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil

It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2014-12, Vol.98, p.98-104
Hauptverfasser: Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G., Corrêa, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 98
container_title Atmospheric environment (1994)
container_volume 98
creator Luna, A.S.
Paredes, M.L.L.
de Oliveira, G.C.G.
Corrêa, S.M.
description It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), scalar wind speed (SWS), global solar radiation (GSR), temperature (TEM), moisture content in the air (HUM), collected by a mobile automatic monitoring station at Rio de Janeiro City in two places of the metropolitan area during 2011 and 2012. The aims of this study were: (1) to analyze the behavior of the variables, using the method of PCA for exploratory data analysis; (2) to propose forecasts of O3 levels from primary pollutants and meteorological factors, using nonlinear regression methods like ANN and SVM, from primary pollutants and meteorological factors. The PCA technique showed that for first dataset, variables NO, NOx and SWS have a greater impact on the concentration of O3 and the other data set had the TEM and GSR as the most influential variables. The obtained results from the nonlinear regression techniques ANN and SVM were remarkably closely and acceptable to one dataset presenting coefficient of determination for validation respectively 0.9122 and 0.9152, and root mean square error of 7.66 and 7.85, respectively. For these datasets, the PCA, SVM and ANN had demonstrated their robustness as useful tools for evaluation, and forecast scenarios for air quality. •The tropospheric ozone concentration was predicted using chemometric tools.•The ANN and SVM were used in predicting the O3 with R2 up to 0.95.•The predictive model is linked with the interaction of local-level meteorological.
doi_str_mv 10.1016/j.atmosenv.2014.08.060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660067270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231014006621</els_id><sourcerecordid>1647024972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-1799299bf378c656199d84ae0ffdb3f291bc1185313a0a268734460e43e551253</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRSMEEsPALyBvkFiQUH7Ejx0w4qmRQAjWltupMG7SdrCdRsxH8M2kuwe2zKpKpVN1LZ-meUyho0Dl823n6i4VjPuOARUd6A4k3GnOqFa8ZVqIu2vPe9YyTuF-86CULQBwZdRZ8_tTxiH4GlIkaSTpOkUkPkWPsWZ3HIdIak5zKvMV5uDJhHucCllKiN-IyzWMwQc3kYhLPpb6M-Xvhbg4kLLMc8qV7NHXlMnO-auwBrhKPodEBiQfXMSQ0zPyKrvrMD1s7o1uKvjopp43X9-8_nLxrr38-Pb9xcvL1gtBa0uVMcyYzciV9rKX1JhBC4cwjsOGj8zQjadU95xyB47J9SOEkICCY99T1vPz5unp7pzTjwVLtbtQPE7T-py0FEulBJCKKbgFKhQwYRS7HQpCy8NVeUJ9TqVkHO2cw87lX5aCPWi1W_tXqz1otaAtHBef3GS44t00Zhd9KP-2mdZS9kqs3IsTt7rCfcBsiw-4eh1CXmXYIYX_Rf0BtgO9NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647004860</pqid></control><display><type>article</type><title>Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil</title><source>Elsevier ScienceDirect Journals</source><creator>Luna, A.S. ; Paredes, M.L.L. ; de Oliveira, G.C.G. ; Corrêa, S.M.</creator><creatorcontrib>Luna, A.S. ; Paredes, M.L.L. ; de Oliveira, G.C.G. ; Corrêa, S.M.</creatorcontrib><description>It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), scalar wind speed (SWS), global solar radiation (GSR), temperature (TEM), moisture content in the air (HUM), collected by a mobile automatic monitoring station at Rio de Janeiro City in two places of the metropolitan area during 2011 and 2012. The aims of this study were: (1) to analyze the behavior of the variables, using the method of PCA for exploratory data analysis; (2) to propose forecasts of O3 levels from primary pollutants and meteorological factors, using nonlinear regression methods like ANN and SVM, from primary pollutants and meteorological factors. The PCA technique showed that for first dataset, variables NO, NOx and SWS have a greater impact on the concentration of O3 and the other data set had the TEM and GSR as the most influential variables. The obtained results from the nonlinear regression techniques ANN and SVM were remarkably closely and acceptable to one dataset presenting coefficient of determination for validation respectively 0.9122 and 0.9152, and root mean square error of 7.66 and 7.85, respectively. For these datasets, the PCA, SVM and ANN had demonstrated their robustness as useful tools for evaluation, and forecast scenarios for air quality. •The tropospheric ozone concentration was predicted using chemometric tools.•The ANN and SVM were used in predicting the O3 with R2 up to 0.95.•The predictive model is linked with the interaction of local-level meteorological.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2014.08.060</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air pollution ; Air quality ; Analysis methods ; Applied sciences ; Artificial neural networks ; Atmospheric pollution ; Exact sciences and technology ; Learning theory ; Neural networks ; Nitrogen dioxide ; Ozone ; Pollutants ; Pollution ; Rio de Janeiro ; Support vector machine ; Support vector machines ; Transmission electron microscopy ; Troposphere</subject><ispartof>Atmospheric environment (1994), 2014-12, Vol.98, p.98-104</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-1799299bf378c656199d84ae0ffdb3f291bc1185313a0a268734460e43e551253</citedby><cites>FETCH-LOGICAL-c441t-1799299bf378c656199d84ae0ffdb3f291bc1185313a0a268734460e43e551253</cites><orcidid>0000-0002-0038-0790 ; 0000-0002-4623-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231014006621$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28866574$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luna, A.S.</creatorcontrib><creatorcontrib>Paredes, M.L.L.</creatorcontrib><creatorcontrib>de Oliveira, G.C.G.</creatorcontrib><creatorcontrib>Corrêa, S.M.</creatorcontrib><title>Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil</title><title>Atmospheric environment (1994)</title><description>It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), scalar wind speed (SWS), global solar radiation (GSR), temperature (TEM), moisture content in the air (HUM), collected by a mobile automatic monitoring station at Rio de Janeiro City in two places of the metropolitan area during 2011 and 2012. The aims of this study were: (1) to analyze the behavior of the variables, using the method of PCA for exploratory data analysis; (2) to propose forecasts of O3 levels from primary pollutants and meteorological factors, using nonlinear regression methods like ANN and SVM, from primary pollutants and meteorological factors. The PCA technique showed that for first dataset, variables NO, NOx and SWS have a greater impact on the concentration of O3 and the other data set had the TEM and GSR as the most influential variables. The obtained results from the nonlinear regression techniques ANN and SVM were remarkably closely and acceptable to one dataset presenting coefficient of determination for validation respectively 0.9122 and 0.9152, and root mean square error of 7.66 and 7.85, respectively. For these datasets, the PCA, SVM and ANN had demonstrated their robustness as useful tools for evaluation, and forecast scenarios for air quality. •The tropospheric ozone concentration was predicted using chemometric tools.•The ANN and SVM were used in predicting the O3 with R2 up to 0.95.•The predictive model is linked with the interaction of local-level meteorological.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Analysis methods</subject><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Atmospheric pollution</subject><subject>Exact sciences and technology</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Nitrogen dioxide</subject><subject>Ozone</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Rio de Janeiro</subject><subject>Support vector machine</subject><subject>Support vector machines</subject><subject>Transmission electron microscopy</subject><subject>Troposphere</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcuO1DAQRSMEEsPALyBvkFiQUH7Ejx0w4qmRQAjWltupMG7SdrCdRsxH8M2kuwe2zKpKpVN1LZ-meUyho0Dl823n6i4VjPuOARUd6A4k3GnOqFa8ZVqIu2vPe9YyTuF-86CULQBwZdRZ8_tTxiH4GlIkaSTpOkUkPkWPsWZ3HIdIak5zKvMV5uDJhHucCllKiN-IyzWMwQc3kYhLPpb6M-Xvhbg4kLLMc8qV7NHXlMnO-auwBrhKPodEBiQfXMSQ0zPyKrvrMD1s7o1uKvjopp43X9-8_nLxrr38-Pb9xcvL1gtBa0uVMcyYzciV9rKX1JhBC4cwjsOGj8zQjadU95xyB47J9SOEkICCY99T1vPz5unp7pzTjwVLtbtQPE7T-py0FEulBJCKKbgFKhQwYRS7HQpCy8NVeUJ9TqVkHO2cw87lX5aCPWi1W_tXqz1otaAtHBef3GS44t00Zhd9KP-2mdZS9kqs3IsTt7rCfcBsiw-4eh1CXmXYIYX_Rf0BtgO9NQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Luna, A.S.</creator><creator>Paredes, M.L.L.</creator><creator>de Oliveira, G.C.G.</creator><creator>Corrêa, S.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7SC</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0038-0790</orcidid><orcidid>https://orcid.org/0000-0002-4623-1897</orcidid></search><sort><creationdate>20141201</creationdate><title>Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil</title><author>Luna, A.S. ; Paredes, M.L.L. ; de Oliveira, G.C.G. ; Corrêa, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-1799299bf378c656199d84ae0ffdb3f291bc1185313a0a268734460e43e551253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Analysis methods</topic><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Atmospheric pollution</topic><topic>Exact sciences and technology</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Nitrogen dioxide</topic><topic>Ozone</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Rio de Janeiro</topic><topic>Support vector machine</topic><topic>Support vector machines</topic><topic>Transmission electron microscopy</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luna, A.S.</creatorcontrib><creatorcontrib>Paredes, M.L.L.</creatorcontrib><creatorcontrib>de Oliveira, G.C.G.</creatorcontrib><creatorcontrib>Corrêa, S.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luna, A.S.</au><au>Paredes, M.L.L.</au><au>de Oliveira, G.C.G.</au><au>Corrêa, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>98</volume><spage>98</spage><epage>104</epage><pages>98-104</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), scalar wind speed (SWS), global solar radiation (GSR), temperature (TEM), moisture content in the air (HUM), collected by a mobile automatic monitoring station at Rio de Janeiro City in two places of the metropolitan area during 2011 and 2012. The aims of this study were: (1) to analyze the behavior of the variables, using the method of PCA for exploratory data analysis; (2) to propose forecasts of O3 levels from primary pollutants and meteorological factors, using nonlinear regression methods like ANN and SVM, from primary pollutants and meteorological factors. The PCA technique showed that for first dataset, variables NO, NOx and SWS have a greater impact on the concentration of O3 and the other data set had the TEM and GSR as the most influential variables. The obtained results from the nonlinear regression techniques ANN and SVM were remarkably closely and acceptable to one dataset presenting coefficient of determination for validation respectively 0.9122 and 0.9152, and root mean square error of 7.66 and 7.85, respectively. For these datasets, the PCA, SVM and ANN had demonstrated their robustness as useful tools for evaluation, and forecast scenarios for air quality. •The tropospheric ozone concentration was predicted using chemometric tools.•The ANN and SVM were used in predicting the O3 with R2 up to 0.95.•The predictive model is linked with the interaction of local-level meteorological.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2014.08.060</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0038-0790</orcidid><orcidid>https://orcid.org/0000-0002-4623-1897</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment (1994), 2014-12, Vol.98, p.98-104
issn 1352-2310
1873-2844
language eng
recordid cdi_proquest_miscellaneous_1660067270
source Elsevier ScienceDirect Journals
subjects Air pollution
Air quality
Analysis methods
Applied sciences
Artificial neural networks
Atmospheric pollution
Exact sciences and technology
Learning theory
Neural networks
Nitrogen dioxide
Ozone
Pollutants
Pollution
Rio de Janeiro
Support vector machine
Support vector machines
Transmission electron microscopy
Troposphere
title Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20ozone%20concentration%20in%20tropospheric%20levels%20using%20artificial%20neural%20networks%20and%20support%20vector%20machine%20at%20Rio%20de%20Janeiro,%20Brazil&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Luna,%20A.S.&rft.date=2014-12-01&rft.volume=98&rft.spage=98&rft.epage=104&rft.pages=98-104&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2014.08.060&rft_dat=%3Cproquest_cross%3E1647024972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647004860&rft_id=info:pmid/&rft_els_id=S1352231014006621&rfr_iscdi=true