Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil

It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2014-12, Vol.98, p.98-104
Hauptverfasser: Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G., Corrêa, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), scalar wind speed (SWS), global solar radiation (GSR), temperature (TEM), moisture content in the air (HUM), collected by a mobile automatic monitoring station at Rio de Janeiro City in two places of the metropolitan area during 2011 and 2012. The aims of this study were: (1) to analyze the behavior of the variables, using the method of PCA for exploratory data analysis; (2) to propose forecasts of O3 levels from primary pollutants and meteorological factors, using nonlinear regression methods like ANN and SVM, from primary pollutants and meteorological factors. The PCA technique showed that for first dataset, variables NO, NOx and SWS have a greater impact on the concentration of O3 and the other data set had the TEM and GSR as the most influential variables. The obtained results from the nonlinear regression techniques ANN and SVM were remarkably closely and acceptable to one dataset presenting coefficient of determination for validation respectively 0.9122 and 0.9152, and root mean square error of 7.66 and 7.85, respectively. For these datasets, the PCA, SVM and ANN had demonstrated their robustness as useful tools for evaluation, and forecast scenarios for air quality. •The tropospheric ozone concentration was predicted using chemometric tools.•The ANN and SVM were used in predicting the O3 with R2 up to 0.95.•The predictive model is linked with the interaction of local-level meteorological.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2014.08.060