Detection and elimination profile of cathinone in equine after norephedrine (Propalin®) administration using a validated liquid chromatography–tandem mass spectrometry method

Cathinone is the principal psychostimulant present in the leaves of khat shrub, which are widely used in East Africa and the Arab peninsula as an amphetamine-like stimulant. Cathinone readily undergoes metabolism in vivo to form less potent cathine and norephedrine as the metabolites. However, the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2013-12, Vol.405 (30), p.9711-9722
Hauptverfasser: Yi, Rong, Zhao, Sarah, Lam, Geoffrey, Sandhu, Jasmeet, Loganathan, Devan, Morrissey, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cathinone is the principal psychostimulant present in the leaves of khat shrub, which are widely used in East Africa and the Arab peninsula as an amphetamine-like stimulant. Cathinone readily undergoes metabolism in vivo to form less potent cathine and norephedrine as the metabolites. However, the presence of cathine and norephedrine in biological fluids cannot be used as an indicator of cathinone administration. The metabolism of pseudoephedrine and ephedrine, commonly used in cold and allergy medications, also produces cathine and norephedrine, respectively, as the metabolites. Besides, cathine and norephedrine may also originate from the ingestion of nutritional supplemental products containing extracts of Ephedra species. In Canada, ephedrine and norephedrine are available for veterinary use, whereas cathinone is not approved for human or veterinary use. In this article, the detection of cathinone in equine after administration of norephedrine is reported. To the best of our knowledge, this is the first such report in any species where administration of norephedrine or ephedrine generates cathinone as the metabolite. This observation is quite significant, because in equine detection of cathinone in biological fluids could be due to administration of the potent stimulant cathinone or the nonpotent stimulant norephedrine. A single oral dose of 450 mg norephedrine was administered to four Standardbred mares. Plasma and urine samples were collected up to 120 h after administration. The amount of cathinone and norephedrine detected in post administration samples was quantified using a highly sensitive, specific, and validated liquid chromatography–tandem mass spectrometry method. Using these results, we constructed elimination profiles for cathinone and norephedrine in equine plasma and urine. A mechanism that generates a geminal diol as an intermediate is postulated for this in vivo conversion of norephedrine to cathinone. Cathinone was also detected in samples collected after a single intramuscular administration of 200 mg ephedrine and oral administration of 300 mg ephedrine in equine. Figure Electron density structure of cathinone
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-013-7073-0