Inner wrinkling control in hydrodynamic deep drawing of an irregular surface part using drawbeads

Inner wrinkling phenomenon is more likely to develop during hydrodynamic deep drawing (HDD) of complicated component-forms due to the higher demand for controlling deformation sequences. Aiming at the problems in control of inner wrinkling for an irregular surface part featured with both concavity a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2014-06, Vol.27 (3), p.697-707
Hauptverfasser: Meng, Bao, Wan, Min, Wu, Xiangdong, Yuan, Sheng, Xu, Xudong, Liu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inner wrinkling phenomenon is more likely to develop during hydrodynamic deep drawing (HDD) of complicated component-forms due to the higher demand for controlling deformation sequences. Aiming at the problems in control of inner wrinkling for an irregular surface part featured with both concavity and convex, this research proposes an optimal design method of drawbead parameters to change the material flow. According to theoretical analysis of the mechanism of inner wrinkling, optimizing cavity pressure only is unreasonable to form a wrinkle-free deep-drawn part, so semi-circular drawbeads are employed. The effects of layout and height of drawbeads on forming results are discussed, and a process window is established based on evaluation indicators including the anti-wrinkle coefficient and the minimum wall thickness. Experiments are carried out to validate the process window, and the wall thickness and the wrinkle height are measured and compared with numerical findings. The results show that the anti-wrinkle ability of drawbeads weakens with increasing oblique angle and distance from the die center, while the wall thickness increases with increasing oblique angle and distance, and the inner wrinkling can be completely suppressed by drawbeads arranged in zones I and II with optimum penetration.
ISSN:1000-9361
DOI:10.1016/j.cja.2014.04.015