Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure

The current study deals with synthesize of novel nanophotocatalysts of CNT/Mo,S-codoped TiO2 by reacting between titanium isopropoxide (Ti(OC3H7)4) and CNT in aqueous ammonia and subsequent calcining of hydrolysis of the products. The prepared catalysts were characterized by N2 adsorption–desorption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2014-10, Vol.317, p.302-311
Hauptverfasser: Hamadanian, M., Shamshiri, M., Jabbari, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study deals with synthesize of novel nanophotocatalysts of CNT/Mo,S-codoped TiO2 by reacting between titanium isopropoxide (Ti(OC3H7)4) and CNT in aqueous ammonia and subsequent calcining of hydrolysis of the products. The prepared catalysts were characterized by N2 adsorption–desorption measurements, XRD, SEM, TEM, EDX, FT-IR, and UV–vis DRS spectroscopy. SEM and TEM images exhibited uniform coverage of CNT with anatase TiO2 nanoclusters. It was also demonstrated that the presence of S and Mo within the TiO2 acts as electrons traps and prevents the charge recombination and also enables the TiO2 photocatalyst to be active in visible-light region. Moreover, the CNT/Mo,S-doped TiO2 nanohybrids has been proven to has a excellent photocatalytic performance in photodecomposition of Congored (CR), at which the rate of decomposition reaches 100% in only 20 and 30min under UV and visible-light irradiation, respectively. The enhanced photocatalytic activity was ascribed to the synergetic effects of excellent electrical property of CNT and metal–non-metal codoping. Finally, which to best of our knowledge is done for the first time, we have demonstrated that Mo- and S-doped TiO2 decorated over CNT, or CNT/Mo,S-codoped TiO2, may have high potential applications in photocatalysis and environmental protection with superior catalytic activity under visible-light illumination.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2014.08.123