Preparation of homogeneous samples of double-labelled protein suitable for single-molecule FRET measurements
Preparation of pure and homogenous site specifically single- and double-labelled biopolymers suitable for spectroscopic determination of structural characteristics is a major current challenge in biopolymers chemistry. In particular, proper analysis of single-molecule Förster resonance energy transf...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2013-07, Vol.405 (18), p.5983-5991 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Preparation of pure and homogenous site specifically single- and double-labelled biopolymers suitable for spectroscopic determination of structural characteristics is a major current challenge in biopolymers chemistry. In particular, proper analysis of single-molecule Förster resonance energy transfer measurements is based on the spectral characteristics of the probes. Heterogeneity of any of the probes may introduce errors in the analysis, and hence, care must be taken to avoid preparation of inhomogeneous labelled biopolymer samples. When we prepared samples of
Escherichia coli
adenylate kinase (AK) mutants labelled with either Atto 488 or Atto 647N, the products were spectrally inhomogeneous and the composition of the mixture changed gradually over time. We show here that the inhomogeneity was not a result of variation in the dye interaction with neighbouring side chains. Rather, the slow drift of the spectral characteristics of the probes was a characteristic of an irreversible chemical transformation probably due to the hydrolysis of the succinimide ring of the attached dye into its succinamic acid form. Overnight incubation of the labelled protein in mild basic solution accelerated the interconversion, yielding homogeneous labelled samples. Using this procedure, we obtained stable homogenous AK mutant labelled at residues 142 and 188. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-013-7002-2 |