The scalability in the mechanochemical syntheses of edge functionalized graphene materials and biomass-derived chemicals

Mechanochemical approaches to chemical synthesis offer the promise of improved yields, new reaction pathways and greener syntheses. Scaling these syntheses is a crucial step toward realizing a commercially viable process. Although much work has been performed on laboratory-scale investigations littl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2014-01, Vol.170, p.223-233
Hauptverfasser: Blair, Richard G, Chagoya, Katerina, Biltek, Scott, Jackson, Steven, Sinclair, Ashlyn, Taraboletti, Alexandra, Restrepo, David T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanochemical approaches to chemical synthesis offer the promise of improved yields, new reaction pathways and greener syntheses. Scaling these syntheses is a crucial step toward realizing a commercially viable process. Although much work has been performed on laboratory-scale investigations little has been done to move these approaches toward industrially relevant scales. Moving reactions from shaker-type mills and planetary-type mills to scalable solutions can present a challenge. We have investigated scalability through discrete element models, thermal monitoring and reactor design. We have found that impact forces and macroscopic mixing are important factors in implementing a truly scalable process. These observations have allowed us to scale reactions from a few grams to several hundred grams and we have successfully implemented scalable solutions for the mechanocatalytic conversion of cellulose to value-added compounds and the synthesis of edge functionalized graphene.
ISSN:1359-6640
1364-5498
DOI:10.1039/c4fd00007b