Characterization and modeling of creep behavior of a thermoset nanocomposite

In this article, we report creep and recovery behavior of nanocomposites based on a high‐temperature‐resistant thermosetting matrix. Nanocomposites with up to 2 wt% of organically modified clay were prepared. The creep and recovery behavior was investigated under various stress levels and at various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2015-02, Vol.36 (2), p.322-329
Hauptverfasser: Faraz, M.I., Besseling, N.A.M., Korobko, A.V., Picken, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we report creep and recovery behavior of nanocomposites based on a high‐temperature‐resistant thermosetting matrix. Nanocomposites with up to 2 wt% of organically modified clay were prepared. The creep and recovery behavior was investigated under various stress levels and at various temperatures. Creep behavior was modeled by a modified Burgers model by introducing a stretched exponential function. This stretched Burgers model satisfactorily describes the creep behavior of the matrix and nanocomposites. The role of filler on the system dynamics has been also discussed and an interesting finding discovered from the stretched Burgers model results. The model results suggest that the dynamics of the filled system is independent of the filler, which is scientifically quite interesting in the field of nanocomposites. The multiple cycle creep and recovery behavior of the matrix were also investigated and the Boltzmann superposition principle was applied to describe the multistep loading creep response. POLYM. COMPOS., 36:322–329, 2015. © 2014 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.22946